欢迎来到天天文库
浏览记录
ID:43353077
大小:428.50 KB
页数:7页
时间:2019-09-30
《知识讲解_平面向量应用举例_基础》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、平面向量应用举例【学习目标】1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题与其他一些实际问题.3.体会用向量方法解决实际问题的过程,知道向量是一种处理几何、物理等问题的工具,提高运算能力和解决实际问题的能力.【要点梳理】要点一:向量在平面几何中的应用向量在平面几何中的应用主要有以下几个方面:(1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时用到向量减法的意义.(2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件:(或x1y2-x2y1=0).(3)证明线段的垂直问题,如证明四边形是矩形、
2、正方形,判断两直线(线段)是否垂直等,常运用向量垂直的条件:(或x1x2+y1y2=0).(4)求与夹角相关的问题,往往利用向量的夹角公式.(5)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解决几何问题.要点诠释:用向量知识证明平面几何问题是向量应用的一个方面,解决这类题的关键是正确选择基底,表示出相关向量,这样平面图形的许多性质,如长度、夹角等都可以通过向量的线性运算及数量积表示出来,从而把几何问题转化成向量问题,再通过向量的运算法则运算就可以达到解决几何问题的目的了.要点二:向量在解析几何中的应用在平面直角
3、坐标系中,有序实数对(x,y)既可以表示一个固定的点,又可以表示一个向量,使向量与解析几何有了密切的联系,特别是有关直线的平行、垂直问题,可以用向量方法解决.常见解析几何问题及应对方法:(1)斜率相等问题:常用向量平行的性质.(2)垂直条件运用:转化为向量垂直,然后构造向量数量积为零的等式,最终转换出关于点的坐标的方程.(3)定比分点问题:转化为三点共线及向量共线的等式条件.(4)夹角问题:利用公式.要点三:向量在物理中的应用(1)利用向量知识来确定物理问题,应注意两方面:一方面是如何把物理问题转化成数学问题,即将物理问题抽象成数学模型;另一方面是如何利用建立起来的数学模型解释相
4、关物理现象.(2)明确用向量研究物理问题的相关知识:①力、速度、位移都是向量;②力、速度、位移的合成与分解就是向量的加减法;③动量mv是数乘向量;④功即是力F与所产生位移s的数量积.(3)用向量方法解决物理问题的步骤:一是把物理问题中的相关量用向量表示;二是转化为向量问题的模型,通过向量运算解决问题;三是把结果还原为物理结论.【典型例题】类型一:向量在平面几何中的应用例1.用向量法证明:直径所对的圆周角是直角.已知:如下图,AB是⊙O的直径,点P是⊙O上任一点(不与A、B重合),求证:∠APB=90°.证明:联结OP,设向量,则且,,即∠APB=90°.【总结升华】解决垂直问题,
5、一般的思路是将目标线段的垂直转化为向量的数量积为零,而在此过程中,则需运用向量运算,将目标向量用基底表示,通过基底的数量积运算式使问题获解,如本题便是将向量,由基底,线性表示.当然基底的选取应以方便运算为准,即它们的夹角是明确的,且长度易知.举一反三:【变式1】P是△ABC所在平面上一点,若,则P是△ABC的()A.外心 B.内心 C.重心 D.垂心【答案】D【变式2】已知正方形ABCD的边长为1,点E是AB边上的动点,则的值为________;的最大值为________.【解析】==1===(F是E点在上的投影)当F与C点重合时,上式取到等号.例2.如图所示,四边形ADCB是正
6、方形,P是对角线DB上一点,PFCE是矩形,证明:.【思路点拨】如果我们能用坐标表示与,则要证明结论,只要用两向量垂直的充要条件进行验证即可.因此只要建立适当的坐标系,得到点A、B、E、F的坐标后,就可进行论证.【解析】以点D为坐标原点,DC所在直线为轴建立如图所示坐标系,设正方形的边长为1,,则,,,,于是,,∵∴.举一反三:【变式1】在平面直角坐标系xOy中,已知点A(―1,―2),B(2,3),C(―2,―1).(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长;(2)设实数t满足,求t的值.【答案】(1),(2)【解析】(1)由题设知,,则,.所以,.故所求的两条
7、对角线长分别为,.(2)由题设知,.由,得(3+2t,5+t)·(―2,―1)=0,从而5t=―11,所以.类型二:向量在解析几何中的应用例3.已知圆C:(x-3)2+(y-3)2=4及定点A(1,1),M为圆C上任意一点,点N在线段MA上,且,求动点N的轨迹方程.【思路点拨】设出动点的坐标,利用向量条件确定动点坐标之间的关系,利用M为圆C上任意一点,即可求得结论.【答案】x2+y2=1【解析】设N(x,y),M(x0,y0),则由得(1―x0,1―y0)=2(x―1,y―1),
此文档下载收益归作者所有