第十章 多目标优化方法简介

第十章 多目标优化方法简介

ID:43207972

大小:219.00 KB

页数:24页

时间:2019-10-02

第十章 多目标优化方法简介_第1页
第十章 多目标优化方法简介_第2页
第十章 多目标优化方法简介_第3页
第十章 多目标优化方法简介_第4页
第十章 多目标优化方法简介_第5页
资源描述:

《第十章 多目标优化方法简介》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、多目标 优化方法简介在实际问题中,对于大量的工程设计方案要评价其优劣,往往要考虑多个目标。例如,对于车床齿轮变速箱的设计,提出了下列要求:1)各齿轮体积总和f1(x)尽可能小.使材料消耗减少,成本降低。2)各传动轴间的中心距总和f2(x)尽可能小,使变速箱结构紧凑。3)齿轮的最大圆周速度f3(x)尽可能低,使变速箱运转噪声小。4)传动效率尽可能高,亦即机械损耗率f4(x)尽可能低,以节省能源。实际的工程设计和产品设计问题通常有多个设计目标,或者说有多个评判设计方案优劣的标准。为了使设计更加符合实际,要求同时考虑多个评价标准,建立多个目标函数,这就

2、是多目标优化问题。多目标优化问题概述在一般的机械最优化设计中,多目标函数的情况较多,目标函数越多,设计的综合效果越好,但问题的求解也越复杂。在多目标优化模型中,还有一类模型,其特点是,在约束条件下,各个目标函数不是同等地被最优化,而是按不同的优先层次先后地进行优化。例如:工厂生产:1号产品,2号产品,3号产品,…,M号产品。应如何安排生产计划,在避免开工不足的条件下,使工厂获得最大利润,工人加班时间尽量地少。若决策者希望把所考虑的两个目标函数按其重要性分成以下两个优先层次:第一优先层次——工厂获得最大利润.第二优先层次——工人加班时间尽可能地少。

3、那么,这种先在第一优先层次极大化总利润,然后在此基础上再在第二优先层次同等地极小化工人加班时间的问题就是分层多目标优化问题。多目标约束优化问题的数学模型为多目标优化设计问题要求各分量目标都达到最优,如能获得这样的结果,当然是十分理想的。但是,一般比较困难,尤其是各个分目标的优化互相矛盾时更是如此。譬如,机械优化设计中技术性能的要求往往与经济性的要求互相矛盾。所以,解决多目标优化设计问题也是一个复杂的问题。近年来国内外学者虽然作了许多研究,也提出了一些解决的方法,但比起单目标优化设计问题来,在理论上和计算方法,都还很不完善,也不够系统。从上述有关多

4、目标优化问题的数学模型可见,多目标(向量)优化问题与单目标(标量)优化问题的一个本质的不同点是:多目标优化是一个向量函数的优化,比较向量函数值的大小,要比标量值大小的比较复杂。在单目标优化问题中,任何两个解都可以比较其优劣,因此是完全有序的。可是对于多目标优化问题,任何两个解不一定都可以比出其优劣,因此只能是半有序的。例如,设计某一产品时,希望对不同要求的A和B为最小。一般说来这种要求是难以完美实现的,因为它们没有确切的意义。除非这些性质靠完全不同的设计变量组来决定,而且全部约束也是各自独立的。对多目标设计指标而言,任意两个设计方案的优劣一般是难

5、以判别的,这就是多目标优化问题的特点。这样,在单目标优化问题中得到的是最优解,而在多目标优化问题中得到的只是非劣解。而且,非劣解往往不只一个。如何求得能接受的最好非劣解,关键是要选择某种形式的折衷。所谓非劣解(或称有效解),是指若有M个目标fi(x0)(i=1,2,…,M),当要求(M-1)个目标值不变坏时,找不到一个x,使得另一个目标函数值f(x)比f(x*)更好,则将此x*作为非劣解。显然,多目标优化问题只有当求得的解是非劣解时才有意义,劣解是没有意义的,而绝对最优解存在的可能性很小。多目标优化方法多目标优化的求解方法甚多,其中最主要的方法是

6、将多目标优化问题求解时作适当的处理。处理的方法可分为两种:一种处理方法是将多目标优化问题重新构造一个函数,即评价函数,从而将多目标(向量)优化问题转变为求评价函数的单目标(标量)优化问题。如主要目标法和统一目标法等。另一种是将多目标(向量)优化问题转化为一系列单目标(标量)优化问题来求解。如分层序列法等。其它还有协调曲线法、合适等约束法等等主要目标法主要目标法的思想是抓住主要目标,兼顾其它要求。求解时从多目标中选择一个目标作为主要目标,而其它目标只需满足一定要求即可。为此,可将这些目标转化成约束条件。也就是用约束条件的形式来保证其他目标不致太差,

7、这样处理后,就成为单目标优化问题。设有l个目标函数f1(x),f2(x),…、fi(x),其中,求解时可从上述多目标函数中选择一个f(x)作为主要目标,则问题变为统一目标法统一目标法又称综合目标法。它是将原多目标优化问题,通过一定方法转化为统一目标函数或综合目标函数作为该多目标优化问题的评价函数,然后用前述的单目标函数优化方法求解。加权组合法又称为线性加权法或加权因子法。即在将各个分目标函数组合为总的“统一目标函数”的过程中,引入加权因子,以平衡各指标及各分目标间的相对重要性以及他们在量纲和量级上的差异,因此,原目标函数可写为:(1)加权组合法w

8、k是第k个分目标函数的加权因子(wk>0),其值决定于各目标的数量级及重要程度。如何确定合理的加权因子是线性加权法的核心,多数情况下加权

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。