端粒和端粒酶地发现历程

端粒和端粒酶地发现历程

ID:43118649

大小:283.33 KB

页数:11页

时间:2019-09-27

端粒和端粒酶地发现历程_第1页
端粒和端粒酶地发现历程_第2页
端粒和端粒酶地发现历程_第3页
端粒和端粒酶地发现历程_第4页
端粒和端粒酶地发现历程_第5页
资源描述:

《端粒和端粒酶地发现历程》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用标准文档端粒和端粒酶的发现历程廖新化引言2009年诺贝尔生理学或医学奖授予了UCSF(加州大学旧金山分校)的Elizabeth Blackburn(简称Liz),Johns Hopkins University(约翰霍普金斯大学)的Carol Greider(简称Carol),以及Howard Medical School(哈佛医学院)的Jack Szostak。诺贝尔奖主页上介绍她/他们获奖的原因是揭示了“how chromosomes are protected by telomeres and 

2、the enzyme telomerase”(染色体是如何被端粒和端粒酶保护的)。端粒和端粒酶的研究进程中贯穿着“发现现象/问题”-“提出概念/模型”-“实验验证”的思路,整个过程就像相继解开一个个puzzle(智力谜团)一样有趣,充满了思想的光辉。重现这个思路对科学工作者是有启发意义的。本文也提供了一个很好的科学问题推演的教学案例。染色体末端的两个难题以及端粒的概念20世纪70年代初,对DNA聚合酶特性的深入了解引申出了一个染色体的复制问题。DNA聚合酶在复制DNA的时候必须要有引物来起始,而且它的酶活

3、性具有方向性,只能沿着DNA5’到3’的方向合成。染色体复制之初可以由小RNA作为引物起始合成,之后细胞的修复机器启动,DNA聚合酶能够以反链DNA为模板,以之前合成的DNA为引物,合成新的DNA取代染色体中间的RNA引物。但是线性染色体最末端的RNA引物因为没有另外的引物起始,没有办法被DNA取代。所以线性染色体DNA每复制一轮,RNA引物降解后末端都将缩短一个RNA引物的长度(图1,简化的示意图,实际上染色体的DNA双链末端不会是平的)。尽管这个引物不长,但是细胞千千万万代地不断复制,如果不进行补偿,

4、染色体不断缩短,最终就会消失。 James Watson(因为发现DNA双螺旋结构获得诺奖)最早就明确指出了这个“末端隐缩问题”,并猜想染色体也许可以通过在复制前联体(染色体末端跟末端连起来)的方式来解决末端复制的问题[1]。文案大全实用标准文档早在1939年,潜心玉米遗传性状研究的Barbara McClintock女士(因为发现玉米的转座子获得诺奖)注意到,在减数分裂后期偶然产生的染色体断裂很容易重新融合起来形成“桥”。在紧接着的有丝分裂中,这种染色体“断裂-融合-桥-断裂”的循环不断继续[2]。既然

5、染色体的断裂末端这么容易相互融合,那么染色体的自然末端,为什么不容易相互融合呢?合理的推测是,染色体的自然末端不同于非正常的DNA断裂末端,它应该有一个特殊的结构来避免染色体之间的相互融合。更早的1938年,Hermann Muller(因为发明用X射线突变基因而获得诺奖)利用X射线照射果蝇产生突变体,注意到染色体的末端跟其它区域的染色体不同,它非常稳定,从未观测到断裂缺失或者倒位(inversion)。他因此先见性地认为染色体的末端比较特殊,它需要被封闭(sealed)起来,并给它一个专有的名称-端粒(

6、telomere,来自希腊词根telos,末端,和meros,部分)[3]。端粒DNA序列的发现以及人工染色体的发明那么端粒为什么与众不同呢?简单地,首先是,它的DNA序列有没有特殊性?提到端粒不能不提到一种特殊的模式生物四膜虫(Tetrahymena thermophila)。它对于发现端粒和端粒酶的贡献就像线虫之于发现细胞凋亡一样(2002年细胞凋亡的研究被授予诺奖)。四膜虫有两个细胞核。小核很稳定,含5对染色体,用于生殖传代。而大核在接合细胞的发育过程中,染色体断裂成200-300个小染色体,rDN

7、A(含有编码核糖体RNA的基因)从染色体上断裂后通过复制更是形成高达~10000个小染色体。四膜虫的小染色体众多,也就说端粒可能非常丰富。这就为端粒研究提供了得天独厚的材料。1978年,Liz女士利用这种特殊的模式生物纯化了rDNA,以rDNA为模板通过体外合成参入dNTP的实验,推断四膜虫的端粒是由许多重复的5’-CCCCAA-3’六个碱基序列组成的[4]。第一个谜底揭开了,哦,重复序列,端粒DNA果然特殊。序列本身隐隐暗示着解决染色体末端的隐缩问题和保护问题的机制。文案大全实用标准文档1980年,当L

8、iz女士在会议上报告她的这一发现的时候,引起了Jack Szostak的极大兴趣。他那时候试图在酿酒酵母(Saccharomyces cerevisiae)中建构人工线性染色体,让它能够在细胞中像自然染色体一样复制。但是当环状质粒线性化转入酵母细胞后,它很快地被降解掉。它的降解是不是因为它的末端没有端粒保护呢?端粒序列的发现让Jack Szostak有机会把线性质粒末端连接上四膜虫的端粒DNA,然后再导入酵母细胞。奇迹发生了,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。