随机事件与概率教案

随机事件与概率教案

ID:42950573

大小:219.00 KB

页数:14页

时间:2019-09-23

随机事件与概率教案_第1页
随机事件与概率教案_第2页
随机事件与概率教案_第3页
随机事件与概率教案_第4页
随机事件与概率教案_第5页
资源描述:

《随机事件与概率教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第26章随机事件的概率单元要点分析教学内容本单元主要学习随机事件的概率,主要分为简单的古典概率,理论上容易求出来的概率;以及通过实验模拟来获得其估计值.学生对随机事件及发生的概率的认识是一个较长的认知进程,义务教育阶段学生可以掌握的有关概率模型大致分为三类:第一类问题没有理论概率,只能借助实验模拟获得其估计值,一般而言,它是纯粹的现实问题;第二类问题虽然存在理论概率,但其理论计算已经超出了义务教育阶段学生认知水平,学生只能借助实验模拟获得其估计值;第三类问题则是简单的古典概率,理论上容易求出其概率.对于第三类问题,其繁简程度又有所不同,如随意掷一枚均匀

2、的骰子,朝上点数为6的概率;连续掷两次均匀的骰子,两次骰子的点数和为6的概率等等.本单元介绍计算其概率的两种方法,一是树状图,二是列表法.本单元还同时将研究上述第一、二两类问题,用实验方法估计随机事件发生的概率,探索理论概率与实验结果之间的辩证关系,进一步加深学生对概率的理解.知识结构:三维目标1.知识与技能.会知道事件发生的可能性是有大有小的,能求出一些简单事件发生的概率以及做出描述;通过实验等活动,理解事件发生的概率,能用实验的方法估计一些复杂的随机事件发生的概率.2.过程与方法.经历实验、统计等活动,在活动中进一步发展学生合作交流的意识和能力.3

3、.情感、态度与价值观.结合具体情境,初步感受到统计推断的合理性,以及在实际生活中的应用价值.教学重点理解理论概率与实验结果之间的关系,掌握其规律.教学难点在解决理论概率中树状图、列表法的应用,体会实验模拟获得的估计值逐渐趋于理论概率这一规律.教学关键要积极参与实验,从中收集数据,逐步计算一个随机事件发生的实验结果.课时划分§26.1概率的预测4课时§26.2模拟实验2课时复习与小结1课时§26.1.1什么是概率(1)教学内容本节课主要学习概率的定义和通过列表法解决理论概率问题,从实验中寻找规律.教学目标1.知识与技能:通过实验,理解事件发生的可能性问题

4、,感受理论概率的意义.2.过程与方法:经历实验等活动过程,学会用列表法估计某一事件发生的概率.3.情感、态度与价值观:发展学生合作交流的意识和能力.重难点、关键-14-1.重点:运用列表法计算简单事件发生的概率.2.难点:对概率的理解.3.关键:在实验中寻找规律.教学准备1.教师准备:骰子、扑克牌、硬币.2.学生准备:骰子、扑克牌、硬币.教学过程一、合作实验,寻找规律1.实验感知.教师活动:拿出一枚硬币抛掷,提出:结果有几种情况?学生活动:拿出一枚硬币抛掷发现结果只有两种情况:“出现正面”和“出现反面”.而且发生的可能性均等.教师引入:表示一个事件发生

5、的可能性大小的这个数,叫做该事件的概率.学生联想:抛掷一枚硬币出现正面的概率是,出现反面的概率是.教师引导:可记作P(发现正面)=;P(出现反面)=.2.问题提出.投掷一枚普通的六面体骰子,“出现数字为5”的概率为多少?学生回答:,可记作P(出现数字5)=.教师师述:上述例子可以经过分析很快地得出概率,但是实际中,许多问题是要进行重复实验、观察频率值的办法来解决的.请看下面一个例子:见课本P106表26.1.1.学生活动:对表26.1.1中的问题进行实验.思路点拨:(1)关注的是发生哪个或哪些结果;(2)注意所有机会均等.(1)、(2)这两种结果个数的

6、比就是所关注的结果发生的概率.教师活动:引导学生在实验中寻找方法.二、范例学习,应用所学1.问题情境1:如图是一个可以自由转动的转盘,转动转盘,当转盘停止转动时,指针落在什么颜色区域的概率大?师生交流:教师动手操作,在实验中发现红色区域的面积最大,因此,当转盘停止转动时,指针落在红色区域的概率大,P(红色区域)=.2.问题情境2:见课本P107问题1.学生活动:分四人小组展开对“问题1”的实验,并从中得到规律:如果掷的次数很多,实验的频率渐趋稳定,平均每6次就有1次掷出“6”.评析:通过实验,让学生逐步计算一个随机事件发生的实验频率,并观察其中的规律性

7、,从而归纳出实验概率趋于理论概率这一规律.3.问题情境3:课本P108思考.师生活动:在教师的引导下,理解“思考”中的问题,提出自己的观点.思路点拨:只要是均匀的骰子,掷得任何一面(1~5)的概率都是一样的.这个概率表示“均等”,也就是掷骰子,六个面出现的概率是均等的.对于第二个问题的提出,结果是不矛盾的,因为实验频率是趋于理论概率的,实验往往是估计值,是一个趋向.评析:一个人的实验数据相差可能较大,但是随着实验次数的增大,实验频率也就比较稳定了.例:见课本P109例1.思路点拨:本题是简单的古典概率,理论上很容易求出其概率.P(抽到男同学名字);P(

8、抽到女同学名字)-14-,得出结论为抽到男同学名字的概率大.教师活动:讲述例题,让学生感受到古

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。