欢迎来到天天文库
浏览记录
ID:42910974
大小:28.50 KB
页数:4页
时间:2019-09-22
《直角三角全等的判定》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、直角三角形全等的判定(斜边直角边)教学设计教学目标知识与技能:在操作、比较中理解直角三角形全等的过程,并能用于解决实际问题.过程与方法:经历探索直角三角形全等判定的过程,掌握数学方法,提高合情推理的能力.情感、态度与价值观:培养几何推理意识,激发学生求知欲,感悟几何思维的内涵.教学重点:理解利用“斜边、直角边”来判定直角三角形全等的方法.教学难点:培养有条理的思考能力,正确使用“综合法”表达.关键:判定两个三角形全等时,要注意这两个三角形中已经具有一对角相等的条件,只需找到另外两个条件即可.教具:
2、投影仪、幻灯片、直尺、圆规.教学方法:采用“问题探究”的教学方法,让学生在互动交流中领会知识.教学过程: 一、新课引入 投影显示 问题:判定三角形全等的方法有四种,若这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢? 这个问题让学生思考分析讨论后回答,教师补充完善。 二、公理的获得1.探究: 已知线段a,c(a3、尺规画图法)让学生概括出HL公理。公理:有斜边和一条直角边对应相等的两个直角三角形全等。2.几何语言:(略) 强调说明: (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。 (2)、判定两个直角三角形全等的方法。 (3)特殊三角形研究思想。3、公理的应用 (1)讲解例1(投影例1) 例1求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。 学生思考、分析、讨论,教师巡视,适当参与讨论。找学生代表口述证明思路。 分析:首4、先要分清题设和结论,然后按要求画出图形,根据题意写出、已知求证后,再写出证明过程。 证明:(略) (2)讲解例2。学生分析完成,教师注重完成后的点评。) 例2:如图2,△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F. 求证:BE=CF 分析:BE和CF分别在△BDE和△CDF中,由条件不能直接证其全等,但可先证明△AED≌△AFD,由此得到DE=DF 证明:(略) (3)讲解例3(投影例3) 例3:如图3,已知△ABC中,∠BAC=,AB5、=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证: (1)BD=DE+CE (2)若直线AE绕A点旋转到图4位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何,请证明; (3)若直线AE绕A点旋转到图5时(BD>CE),其余条件不变,BD与DE、CE的关系怎样?请直接写出结果,不须证明 学生口述证明思路,教师强调说明:阅读问题的思考方法及思想。 4、课堂小结: (1)判定直角三角形全等的方法:5个(SAS、ASA、AAS、SSS、6、HL)在这些方法的条件中都至少包含一条边。 (2)直角三角形判定方法的综合运用 让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。 5、布置作业: 书面作业P44#6、8 板书设计: 探究活动直角形全等的判定 如图(1)A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC, 若AB=CD求证:BD平分EF。若将△DEC的边EC沿AC方向移动变为如图(2)时,其余条件不变,上述结论是否成立,请说明理由。
3、尺规画图法)让学生概括出HL公理。公理:有斜边和一条直角边对应相等的两个直角三角形全等。2.几何语言:(略) 强调说明: (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。 (2)、判定两个直角三角形全等的方法。 (3)特殊三角形研究思想。3、公理的应用 (1)讲解例1(投影例1) 例1求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。 学生思考、分析、讨论,教师巡视,适当参与讨论。找学生代表口述证明思路。 分析:首
4、先要分清题设和结论,然后按要求画出图形,根据题意写出、已知求证后,再写出证明过程。 证明:(略) (2)讲解例2。学生分析完成,教师注重完成后的点评。) 例2:如图2,△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F. 求证:BE=CF 分析:BE和CF分别在△BDE和△CDF中,由条件不能直接证其全等,但可先证明△AED≌△AFD,由此得到DE=DF 证明:(略) (3)讲解例3(投影例3) 例3:如图3,已知△ABC中,∠BAC=,AB
5、=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证: (1)BD=DE+CE (2)若直线AE绕A点旋转到图4位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何,请证明; (3)若直线AE绕A点旋转到图5时(BD>CE),其余条件不变,BD与DE、CE的关系怎样?请直接写出结果,不须证明 学生口述证明思路,教师强调说明:阅读问题的思考方法及思想。 4、课堂小结: (1)判定直角三角形全等的方法:5个(SAS、ASA、AAS、SSS、
6、HL)在这些方法的条件中都至少包含一条边。 (2)直角三角形判定方法的综合运用 让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。 5、布置作业: 书面作业P44#6、8 板书设计: 探究活动直角形全等的判定 如图(1)A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC, 若AB=CD求证:BD平分EF。若将△DEC的边EC沿AC方向移动变为如图(2)时,其余条件不变,上述结论是否成立,请说明理由。
此文档下载收益归作者所有