14.1.4整式的乘法(整式除法2)

14.1.4整式的乘法(整式除法2)

ID:42898498

大小:59.55 KB

页数:3页

时间:2019-09-23

14.1.4整式的乘法(整式除法2)_第1页
14.1.4整式的乘法(整式除法2)_第2页
14.1.4整式的乘法(整式除法2)_第3页
资源描述:

《14.1.4整式的乘法(整式除法2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、14.1.4整式的乘法(整式除法2)教学目标:知识与技能:1、掌握单项式除以单项式的运算法则及多项式除以单项式的运算法则。2、熟练运用这些法则进行有关计算。 过程与方法: 通过自主探索、合作交流,真正理解体会法则的来源、意义及应用。 情感、态度与价值观: 使学生在学习中获得成就感,增强学好数学的能力和信心。教学重点:掌握单项式除以单项式的运算法则及多项式除以单项式的运算法则。教学难点:熟练运用这些法则进行有关计算。教学结构(思路)设计:一、讲授启发;二、任务导向;三、合作探究;四、思维交流;五、巩固拓展 教学活动设计一、讲授

2、启发 直接写出结果: (1)(-2a)3·(1-2a+a2)= (2)X5·X3=(3)X3÷X=(4)(2a+b)4÷(2a+b)2= 【设计意图】通过计算,让学生回顾整式的乘法中单项式乘单项式、多项式乘多项式的运算法则和同底数幂除法的法则。 二、任务导向 问题1:木星的质量约是1.90×1024吨.地球的质量约是5.08×1021吨.•你知道木星的质量约为地球质量的多少倍吗? S:这是除法运算,木星的质量约为地球质量的(1.90×1024)÷(5.98×1021)倍. T:计算(1.90×1024÷(5.98×1021)

3、.说说你计算的根据是什么?【设计意图】选择适当的实际问题作为课堂引入,创设一个为学生所熟知的情景。学生将自然的体会到学习整式除法的必要性。三、合作探究  讨论结果展示:  可以从两方面考虑: 1.从乘法与除法互为逆运算的角度. 我们可以想象5.98×1021·(  )=1.90×1024.根据单项式与单项式相乘的运算法则:单项式与单项式相乘,是把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变作为积的因式,可以继续联想:所求单项式的系数乘以5.98•等于1.90,所以所求单项式系数为1.90÷5.98≈0.318,

4、•所求单项式的幂值部分应包含1024÷1021即103,由此可知5.98×1021·(0.318×103)=1.90×1024.所以(1.90×1024)÷(5.98×1021)=0.38×103=380. 【设计意图】培养学生的观察能力 2.还可以从除法的意义去考虑. 问题2:你能利用问题1中的方法计算下列各式吗?8a3÷2a;5x3y÷3xy;12a3b2x3÷3ab2. 问题3:观察上述几个式子的运算,它们有哪些共同特征?【设计意图】引导学生用自己的语言叙述所发现的规律,发现这个除法的一些特点,为进行简单计算打下基础,

5、并培养观察概括能力及字母表示数的能力。四、思维交流 讨论结果展示: (1)都是单项式除以单项式. (2)运算结果都是把系数、同底数幂分别相除后作为商的因式;•对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式. (3)单项式相除是在同底数幂的除法基础上进行的. (4)单项式除以单项式可以分为系数相除;同底数幂相除,只在被除式里含有的字母三部分运算.  【板书】:单项式除以单项式法则: 单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。【设计意图】通过例

6、题的剖析和解决,培养学生耐心细致、严谨的数学思维品质,训练学生形成一定的计算能力五、巩固拓展 例2:计算   (1)28x4y2÷7x3y   (2)-5a5b3c÷15a4b   (3)(2x2y)3·(-7xy2)÷14x4y3   (4)5(2a+b)4÷(2a+b)2 分析:(1)、(2)直接运用单项式除法的运算法则;(3)要注意运算顺序:先乘方,•再乘除,再加减;(4)鼓励学生悟出:将(2a+b)视为一个整体来进行单项式除以单项式的运算. 练习:课本练习1、2.拓展: 计算下列各题并说说你的理由。 (1)(ad+b

7、d)÷d (2)(a2b+3ab)÷a(3)(xy3-2xy)÷xy 活动设计: T:你能归纳出多项式除以单项式的运算方法吗?【板书】:多项式除以单项式法则: 多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。 即:(a+b+c)÷m=a÷m+b÷m+c÷m(m≠0)【设计意图】达到检验、巩固和学以致用的目的,培养学生有条理的思考及表达能力。例3:计算: (1)(28a3-14a2+7a)÷7a; (2)(36x4y3-24x3y2+3x2y2)÷(-6x2y); (3)[(2x+y)2-y(y+4x

8、)-8x]÷2x。  练习:课本练习。课后练习: 【设计意图】问题(3)体现了转化的数学思想,通过对等式化简,把系数和指数间关系转化为方程。六、归纳总结: T:这节课你学到了哪些知识? S:畅所欲言、互相补充。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。