欢迎来到天天文库
浏览记录
ID:42890222
大小:229.50 KB
页数:5页
时间:2019-09-22
《角平分线教学设计 (2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、绵阳富乐国际学校§12.3.2角的平分线的性质教学目标(一)教学知识点角的平分线的性质(二)能力训练要求1.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.2.能应用这两个性质解决一些简单的实际问题.(三)情感与价值观要求通过折纸、画图、文字一符号的翻译活动,培养学生的联想、探索、概括归纳的能力,激发学生学习数学的兴趣.教学重点角平分线的性质及其应用.教学难点灵活应用两个性质解决问题.教学方法探索、归纳的方法.教具准备剪刀、折纸、投影片.教学过程Ⅰ.创设情境,引入新课[师]请同学们拿出准备好的折纸与剪刀,自己
2、动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?[生]我发现第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对.[师]你的叙述太精彩了.这说明角的平分线除了有平分角的性质,还有其他性质,今天我们就来研究这个问题.Ⅱ.导入新课角平分线的性质即已知角的平分线,能推出什么样的结论.操作:1.折出如图所示的折痕PD、PE.2.你与同伴用三角板检测你们所折
3、的折痕是否符合图示要求.画一画:按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?拿出两名同学的画图,放在投影下,请大家评一评,以达明确概念的目的.5绵阳富乐国际学校[生]同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点画两边的垂线段,所以同学甲的画法不符合要求.[生甲]噢,对于,我知道了.[师]同学甲,你再做一遍加深一下印象.问题1:你能用文字语言叙述所画图形的性质吗?[生]角平分线上的点到角的两边的距离相等.问题2:(出示投影片)能否用符号语言来翻译“角平分线上的
4、点到角的两边的距离相等”这句话.请填下表:学生通过讨论作出下列概括:已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.由已知事项推出的事项:PD=PE.于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.[师]那么到角的两边距离相等的点是否在角的平分线上呢?(出示投影)问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:5绵阳富乐国际学校[生讨论]已知事项符合直角三角形全等的条件,所以Rt△PEO≌△PDO(HL).于是可得∠PDE=∠POD.由已知推出的事项
5、:点P在∠AOB的平分线上.[师]这样的话,我们又可以得到一个性质:到角的两边距离相等的点在角的平分线上.同学们思考一下,这两个性质有什么联系吗?[生]这两个性质已知条件和所推出的结论可以互换.[师]对,这是自己的语言,这一点在数学上叫“互逆性”.下面请同学们思考一个问题.思考:如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?2.比例尺
6、为1:20000是什么意思?(学生以小组为单位讨论,教师可深入到学生中,及时引导)讨论结果展示:1.应该是用第二个性质.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500米处.2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,这就涉及一个单位换算问题了.1m=100cm,所以比例尺为1:20000,其实就是图中1cm表示实际距离200m的意思.作图如下:5绵阳富乐国际学校第一步:尺规作图法作出∠AOB的平分线OP.第二步:在射线OP上截取OC=2.5cm,确定C点,C点就是集贸市场所建
7、地了.总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,我们可以直接利用性质解决问题.[例]如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.[师生共析]点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,根据角平分线性质和等式的传递性可以解决这个问题.证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.因为BM是
8、△ABC的角平分线,点P在BM上.所以PD=PE.同理PE=PF.所以PD=PE=PF.即点P到三边AB、BC、CA的距离相等.Ⅲ.随堂练习1.课本P107练习.2.课本P108习题13.3─2.在这里要提醒学生直接利用角平分线的性质,无须再证三角形全等.Ⅳ.课时小结今天,我们学习了关于角
此文档下载收益归作者所有