探究圆的弧长和扇形面积公式

探究圆的弧长和扇形面积公式

ID:42881892

大小:91.00 KB

页数:4页

时间:2019-09-22

探究圆的弧长和扇形面积公式_第1页
探究圆的弧长和扇形面积公式_第2页
探究圆的弧长和扇形面积公式_第3页
探究圆的弧长和扇形面积公式_第4页
资源描述:

《探究圆的弧长和扇形面积公式》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、24.4探究圆的弧长和扇形面积公式第1课时弧长和扇形面积【知识与技能】经历探索弧长计算公式的过程,培养学生的探索能力.了解弧长计算公式,并会应用弧长公式解决问题,提高学生的应用能力.【过程与方法】通过等分圆周的方法,体验弧长扇形面积公式的推导过程,培养学生抽象、理解、概括、归纳能力和迁移能力.【情感态度】通过对弧长和扇形面积公式的推导,理解整体和局部的关系.通过图形的转化,体会转化在数学解题中的妙用.【教学重点】弧长和扇形面积公式,准确计算弧长和扇形的面积.【教学难点】运用弧长和扇形面积公式计算比较复杂图形的面积.一、情境导入,初步认识问题1在一块空旷的草地上有一根柱子,柱子上拴着一条长

2、3m的绳子,绳子的另一端拴着一只羊,问:(1)这只羊的最大活动面积是多少?(2)如果这只羊只能绕过柱子n°角,那么它的最大活动面积是多少?问题2制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,这就涉及到计算弧长的问题.如图,根据图中的数据你能计算的长吗?求出弯道的展直长度.【教学说明】通过这样两个实际问题引入有关弧长和扇形面积的计算,从而引入课题。同时,这也是本节中最常见的两种类型.二、思考探究,获取新知1.探索弧长公式思考1你还记得圆的周长的计算公式吗?圆的周长可以看作多少度的圆周角所对的弧长?由此出发,1°的圆心角所对的弧长是多少?n°的圆心角所对的弧长多少?分析:在半径为

3、R的圆中,圆周长的计算公式为:C=2πR,则:圆的周长可以看作360°的圆心角所对的弧;∴1°的圆心角所对的弧长是:1/360·2πR=πR/180;2°的圆心角所对的弧长是:2/360·2πR=πR/90;4°的圆心角所对弧长是:4/360·2πR=πr/45;∴n°的圆心角所对的弧长是:l=nπR/180;由此可得出n°的圆心角所对的弧长是:l=nπR/180.【教学说明】①在应用弧长公式进行计算时,要注意公式中n的意义,n表示1°圆心角的倍数,它是不带单位的;②公式可以按推导过程来理解记忆;③区分弧、弧度、弧长三个概念,度数相等的弧,弧长不一定相等;弧长相等的弧也不一定是等弧,而只

4、有在同圆或等圆中才可能是等弧.小练习:①应用弧长公式求出上述弯道展直的长度.②已知圆弧的半径为50cm,圆心角为60°,求此圆弧的长度.答案:①500π+140(mm)②50π/3(cm)2.扇形面积计算公式如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.思考2扇形面积的大小与哪些因素有关?(学生思考并回答)从扇形的定义可知,扇形的面积大小与扇形的半径和圆心角有关.扇形的半径越长,扇形面积越大;扇形的圆心角越大,扇形面积越大.思考3若⊙O的半径为R,求圆心角为n°的扇形的面积.【教学说明】此问题有一定的难度,目的是引导学生迁移推导弧长公式的方法步骤,利用迁移方法探究新问

5、题,归纳结论.小练习:①如果扇形的圆心角是230°,那么这个扇形的面积等于这个扇形所在圆的面积的23/36.②扇形面积是它所在圆的面积的23,这个扇形的圆心角的度数是240°;③扇形的面积是S,它的半径是r,这个扇形的弧长是:2S/r.【教学说明】这几个小练习是帮助学生理解扇形面积公式的推导,加深对公式以及扇形面积和弧长之间的转化关系的记忆.三、典例精析,掌握新知例1(教材112页例2)如图,水平放置的圆柱形排水管道的截面半径为0.6m,其中水面高0.3m,求截面上有水部分的面积(精确到0.01m2).解:连接OA、OB,作弦AB的垂线OD交于点C.∵OC=0.6,DC=0.3,∴OD=

6、OC-DC=0.3在Rt△OAD中,OA=0.6,OD=0.3,由勾股定理可知:AD=0.3;在Rt△OAD中,OD=1/2OA.∴∠OAD=30°,∠AOD=60°,∴∠AOB=120°.∴有水部分的面积为:S=S扇形OAB-S△OAB=0.12π-12×0.63×0.3≈0.22(m2).例2如图,⊙O1半径是⊙O2的直径,C是⊙O1上一点,O1C交⊙O2于点B,若⊙O1的半径等于5cm,AC的长等于⊙O1周长的110,则AB的长是cm.分析:由AC的长是⊙O1周长的1/10可知:∠AO1C=36°,∠AO2B=2∠AO1B=72°,O2A=5/2,∴的长l=72π/180×5/2=

7、π.【教学说明】例1是求弓形面积,弓形面积是扇形面积与三角形面积的差或和,因此掌握了扇形面积公式,弓形面积就迎刃而解了,例2是结合弧长公式和圆有关知识进行求解.可由学生合作交流完成.四、运用新知,深化理解完成教材第113页练习3个小题.【教学说明】这几个练习较为简单,可由学生自主完成,教师再予以点评.五、师生互动,课堂小结通过这堂课的学习,你知道弧长和扇形面积公式吗?你会用这些公式解决实际问题吗?【教学说明】教师先提出问题,然后师生

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。