欢迎来到天天文库
浏览记录
ID:42867996
大小:60.00 KB
页数:6页
时间:2019-09-23
《垂径定理.1圆》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、24.1圆第一课时云南省弥勒市西山民族中学:胡正山教学内容1.圆的有关概念.2.垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧及其它们的应用.教学目标了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.重难点、关键1.重点:垂径定理及其运用.2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实
2、际问题.教学过程一、复习引入(学生活动)请同学口答下面两个问题(提问一、两个同学)1.举出生活中的圆三、四个.2.你能讲出形成圆的方法有多少种?老师点评(口答):(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆.二、探索新知从以上圆的形成过程,我们可以得出:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.学生四人一组讨论下面的两个问题:问题1:图上各点到定点(圆心O)的距
3、离有什么规律?问题2:到定点的距离等于定长的点又有什么特点?老师提问几名学生并点评总结.(1)图上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.因此,我们可以得到圆的新定义:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形.同时,我们又把①连接圆上任意两点的线段叫做弦,如图线段AC,AB;②经过圆心的弦叫做直径,如图24-1线段AB;③圆上任意两点间的部分叫做圆弧,简称弧,“以A、C为端点的弧记作”,读作“圆弧”或“弧AC”.大于半圆的弧(如图所示叫做优弧,小于
4、半圆的弧(如图所示)或叫做劣弧.④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.(学生活动)请同学们回答下面两个问题.1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?2.你是用什么方法解决上述问题的?与同伴进行交流.(老师点评)1.圆是轴对称图形,它的对称轴是直径,我能找到无数多条直径.3.我是利用沿着圆的任意一条直径折叠的方法解决圆的对称轴问题的.因此,我们可以得到:圆是轴对称图形,其对称轴是任意一条过圆心的直线.(学生活动)请同学按下面要求完成下题:如图,AB是⊙O的一条弦,作直径CD,使CD
5、⊥AB,垂足为M.(1)如图是轴对称图形吗?如果是,其对称轴是什么?(2)你能发现图中有哪些等量关系?说一说你理由.(老师点评)(1)是轴对称图形,其对称轴是CD.(2)AM=BM,,,即直径CD平分弦AB,并且平分及.这样,我们就得到下面的定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.下面我们用逻辑思维给它证明一下:已知:直径CD、弦AB且CD⊥AB垂足为M求证:AM=BM,,.分析:要证AM=BM,只要证AM、BM构成的两个三角形全等.因此,只要连结OA、OB或AC、BC即可.证明:如图,连结OA、OB,则OA=OB在Rt△
6、OAM和Rt△OBM中∴Rt△OAM≌Rt△OBM∴AM=BM∴点A和点B关于CD对称∵⊙O关于直径CD对称∴当圆沿着直线CD对折时,点A与点B重合,与重合,与重合.∴,进一步,我们还可以得到结论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(本题的证明作为课后练习)例1.如图,一条公路的转弯处是一段圆弦(即图中,点O是的圆心,其中CD=600m,E为上一点,且OE⊥CD,垂足为F,EF=90m,求这段弯路的半径.分析:例1是垂径定理的应用,解题过程中使用了列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方
7、法一定要掌握.解:如图,连接OC设弯路的半径为R,则OF=(R-90)m∵OE⊥CD∴CF=CD=×600=300(m)根据勾股定理,得:OC2=CF2+OF2即R2=3002+(R-90)2解得R=545∴这段弯路的半径为545m.三、巩固练习教材P86练习P88练习.四、应用拓展例2.有一石拱桥的桥拱是圆弧形,如图24-5所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面宽MN=32m时是否需要采取紧急措施?请说明理由.分析:要求当洪水到来时,水面宽MN=32m是否需要采取紧急措施,只要求出DE的长
8、,因此只要求半径R,然后运用几何代数解求R.解:不需要采取紧急措施设OA=R,在Rt△AOC中,AC=30,CD=18R2=302+(R-18)2R2=900+R2-36R+324解得R=34(m)连接OM,设DE=x,
此文档下载收益归作者所有