欢迎来到天天文库
浏览记录
ID:42866494
大小:69.00 KB
页数:4页
时间:2019-09-23
《圆周角的概念与圆周角定理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、24.1圆(第3课时)【学习目标】1.了解圆周角的概念.2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4.熟练掌握圆周角的定理及其推理的灵活运用.设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题【学习过程】一、温故知新:(学生活动)同学们口答下面两个问题.1.什么叫圆心角?2.圆心角、弦、弧之
2、间有什么内在联系呢?二、自主学习:自学教材P90---P93,思考下列问题:1、什么叫圆周角?圆周角的两个特征:。2、在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题.(1)一个弧上所对的圆周角的个数有多少个?(2).同弧所对的圆周角的度数是否发生变化?(3).同弧上的圆周角与圆心角有什么关系?3、默写圆周角定理及推论并证明。4、能去掉“同圆或等圆”吗?若把“同弧或等弧”改成“同弦或等弦”性质成立吗?5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?一、典型例题:例1
3、、(教材93页例2)如图,⊙O的直径AB为10cm,弦AC为6cm,,∠ACB的平分线交⊙O于D,求BC、AD、BD的长。例2、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?二、巩固练习:1、(教材P93练习1)解:2、(教材P93练习2)3、(教材P93练习3)证明:4、(教材P95习题24.1第9题)三、总结反思:【达标检测】1.如图1,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于().A.140°B.110°C.120°D.130°(1)(2)(3)2.如图2,∠1、∠2、
4、∠3、∠4的大小关系是()A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2C.∠4<∠1<∠3∠2D.∠4<∠1<∠3=∠23.如图3,(中考题)AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则∠BCD等于()A.100°B.110°C.120°D.130°4.半径为2a的⊙O中,弦AB的长为2a,则弦AB所对的圆周角的度数是________.5.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,则∠1+∠2=_______.(4)(5)6.(中考题)如图5,于,若,则7.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为
5、1,求弦长AB.【拓展创新】1.如图,已知AB=AC,∠APC=60°(1)求证:△ABC是等边三角形.(2)若BC=4cm,求⊙O的面积.3、教材P95习题24.1第12、13题。【布置作业】教材P95习题24.1第10、11题。
此文档下载收益归作者所有