欢迎来到天天文库
浏览记录
ID:42853823
大小:93.50 KB
页数:5页
时间:2019-09-23
《切线的判定和性质 (3)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2课时切线的判定和性质【知识与技能】能判定一条直线是否为一条切线,会过圆上一点作圆的切线.会运用切线的判定定理和性质定理解决问题.【过程与方法】经历切线的判定定理及性质定理的探究过程,养成学生既能自主探究,又能合作探究的良好学习习惯.【情感态度】体验切线在实际生活中的应用,感受数学就在我们身边,感受证明过程的严谨性及结论的正确性.【教学重点】切线的判定定理及性质定理的探究和运用.【教学难点】切线的判定定理和性质的应用.一、情境导入,初步认识情境1下雨天,小孩子总喜欢转动雨伞,你发现雨伞的水珠顺着伞面的边缘飞出,水珠是顺着什么方向飞出的?情
2、境2用机器打磨铁制零件时,铁屑是沿什么方向飞出的?情境3用一根细线系一个小球,当你快速转动细线时,小球运动形成一个圆,突然这个小球脱落,沿着圆的边缘飞出去,你知道小球会顺着什么方向飞出吗?【教学说明】通过观察生活中的实例,使学生初步感知直线与圆相切的情景,深化学生思想中的数学模型.二、思考探究,获取新知1.切线的判定定理思考1如图,在⊙O中,经过半径OA的外端点A,作直线l⊥OA,则圆心O到直线l的距离是多少?直线l和⊙O有什么位置关系?分析:∵直线l⊥OA,而点A是⊙O的半径OA的外端点.∴直线l与⊙O只有一个交点,并且圆心O到直线l的距
3、离是垂线段OA,即是⊙O的半径.∴直线l与⊙O相切.【归纳总结】切线的判定定理:经过半径的外端(点)并且垂直于这条半径的直线是圆的切线.【教学说明】结合切线的定义以及“如果圆心到直线的距离等于半径,那么直线和圆相切”,引导学生得出结论.在切线的判定定理中,“经过外端”和“垂直于半径”两者缺一不可.试一试(1)已知一个圆和圆上的一点,如何过这个点画出圆的切线?(只能作一条直线)(2)下图中的直线是圆的切线吗?(都不是圆的切线)2.切线的性质定理思考2已知直线l是⊙O的切线,切点为A,那么半径OA与直线l是不是一定垂直呢?为什么?(学生讨论,由
4、学生代表回答)教师点评:由于l是⊙O的切线,点A为切点,∴圆心O到l的距离等于半径,所以OA就是圆心O到直线l的距离.∴OA⊥直线l.切线的性质定理:圆的切线垂直于过切点的半径.符号语言:∵直线l是⊙O的切线,切点为A.∴OA⊥直线l.【教学说明】这个问题在引导学生分析时,直接证明比较困难,我们可以运用反证法.假设OA与l不垂直,过点O作OM⊥l,垂足为M,根据垂线段最短的性质,有OM<OA,这说明圆心O到直线l的距离小于半径OA,直线l与⊙O就相交了,而这与直线l与⊙O相切矛盾.因此,OA垂直于直线l.三、典例精析,掌握新知例1教材98页
5、例1.(要证明一条直线是圆的切线,必须符合两个条件,即“经过半径外端”和“垂直于这条半径”.引导学生分析.例2(1)如图(1),AB是⊙O的弦,PA是⊙O的切线,A是切点,∠PAB=30°,求∠AOB.(2)如图(2),AB是⊙O的直径,DC切⊙O于点C,连接CA、CB,AB=12,∠ACD=30°,求AC的长.解:(1)∵△OAB为等腰三角形,∴∠OAB=∠OBA.又∵PA是⊙O的切线,∴由切线的性质可知:PA⊥OA,∴∠OAP=90°,∴∠OAB=∠OAP-∠BAP=90°-30°=60°,∴∠AOB=180°-2∠OAB=180°-2
6、×60°=60°.(2)连接OC,∵CD是⊙O的切线,∴OC⊥CD,而∠ACD=30°,.∴∠OCA=60°,∴△OAC是等边三角形,AC=OA=r=1/2×AB=1/2×12=6.【教学说明】例1是对切线的判定定理的应用,要使学生掌握用这个定理来证明切线的关键(紧扣两点).例2是利用切线的性质解题.在解决与圆有关的切线的问题时,常见辅助线有:(1)已知直线是圆的切线时,通常连接过切点的半径,则这条半径垂直于切线.(2)要证明一条直线是圆的切线:①若直线过圆上某一点,则连接这点和圆心得到辅助半径,再证这条半径与直线垂直.即:已知公共点,连半
7、径证垂直.②若直线与圆的公共点不确定,则过圆心作直线的垂线段,证明这条垂线段长等于圆的半径长.即:未知公共点,作垂线证半径.这种题型后面会给出练习.四、运用新知,深化理解1.完成教材第98页练习1、2.2.如图,已知PA是∠BAC的平分线,AB是⊙O的切线,切点为E,求证:AC是⊙O的切线.【教学说明】教材上的练习1、2由学生自主完成,加深对切线的判定及性质的理解掌握;第2题是对切线的性质与判定的综合应用,教师可先让学生独立思考,再加以提示.最后,师生共同完成解题.【答案】1.(1)∵AT=AB,∴∠B=∠T=45°,∴∠A=180°-∠B
8、-∠T=90°.又∵AB是⊙O的直径,∴AT是⊙O的切线.(2)l1∥l2,理由如下:∵AB是⊙O的直径,且l1、l2是⊙O的切线,∴l1⊥AB,l2⊥AB,∴l1∥l2.2.过
此文档下载收益归作者所有