欢迎来到天天文库
浏览记录
ID:42839460
大小:605.00 KB
页数:11页
时间:2019-09-23
《专题2.7 以二次函数与圆的问题为背景的解答题-2018年中考数学备考优生百日闯关系列(第02期)(原卷版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第七关:以二次函数与圆的问题为背景的解答题【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,很多学生在有限的时间内都不能很好完成。由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。“圆”在初中阶段学习占有重要位置,“垂径定理”、“点与圆的位置关系”的判定与性质、“直线与圆的位置关系”的判定与性质、“正多边形的判定与性质”通常是命题频率高的知识点.由于这部分知识的综合性较强,多作为单独的解答题出现.如果
2、把圆放到直角坐标系中,同二次函数结合,则多作为区分度较高的压轴题中出现.此类题目由于解题方法灵活,考查的知识点全面,体现了方程、建模、转化、数形结合、分类讨论等多种数学思想,得到命题者的青睐【解题思路】二次函数与圆都是初中数学的重点内容,历来是中考数学命题的热点,其本身涉及的知识点就较多,综合性和解题技巧较强,给解题带来一定的困难,而将函数与圆相结合,并作为中考的压轴题,就更显得复杂了.只要我们掌握解决这类问题的思路和方法,采取分而治之,各个击破的思想,问题是会迎刃而解的.解决二次函数与圆的问题,用到的数学思想方法有化归思想、分
3、类思想、数学结合思想,以及代入法、消元法、配方法、代定系数法等。解题时要注意各知识点之间的联系和数学思想方法、解题技巧的灵活应用,要抓住题意,化整为零,层层深入,各个击破,从而达到解决问题的目的。【典型例题】【例1】(贵州省遵义市2018年中考数学模拟)已知二次函数y=﹣x2+bx+c+1。(1)当b=1时,求这个二次函数的对称轴的方程;(2)若c=﹣b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?(3)若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,b>0,与y轴的正半轴交于点M,以AB为直径的
4、半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式.【答案】(1)对称轴的方程为x=;(2)b=;(3)y=﹣x2+x+1.【解析】试题分析:(1)二次函数y=﹣x2+bx+c+1的对称轴为x=,即可得出答案;(2)二次函数y=﹣x2+bx+c+1的顶点坐标为(),y由二次函数的图象与x轴相切且c=b2﹣2b,得出方程组,求出b即可;(3)由圆周角定理得出∠AMB=90°,证出∠OMA=∠OBM,得出△OAM∽△OMB,得出OM2=OA•OB,由二次函数的图象与x轴的交
5、点和根与系数关系得出OA=﹣x1,OB=x2,x1+x2=b,x1x2=﹣(c+1),得出方程(c+1)2=c+1,得出c=0,OM=1,证明△BDE∽△BOM,△AOM∽△ADF,得出,得出OB=4OA,即x2=﹣4x1,由x1x2=﹣(c+1)=﹣1,得出方程组,解方程组求出b的值即可.试题解析:解:(1)二次函数y=﹣x2+bx+c+1的对称轴为x=,当b=1时,=,∴当b=1时,这个二次函数的对称轴的方程为x=.(2)二次函数y=﹣x2+bx+c+1的顶点坐标为().∵二次函数的图象与x轴相切且c=﹣b2﹣2b,∴,解得
6、:b=,∴b为,二次函数的图象与x轴相切.(3)∵AB是半圆的直径,∴∠AMB=90°,∴∠OAM+∠OBM=90°.∵∠AOM=∠MOB=90°,∴∠OAM+∠OMA=90°,∴∠OMA=∠OBM,∴△OAM∽△OMB,∴,∴OM2=OA•OB.∵二次函数的图象与x轴交于点A(x1,0),B(x2,0),∴OA=﹣x1,OB=x2,x1+x2=b,x1x2=﹣(c+1).∵OM=c+1,∴(c+1)2=c+1,解得:c=0或c=﹣1(舍去),∴c=0,OM=1.∵二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F
7、,且满足=,∴AD=BD,DF=4DE,DF∥OM,∴△BDE∽△BOM,△AOM∽△ADF,∴,∴DE=,DF=,∴×4,∴OB=4OA,即x2=﹣4x1.∵x1x2=﹣(c+1)=﹣1,∴,解得:,∴b=﹣+2=,∴二次函数的表达式为y=﹣x2+x+1.【名师点睛】本题是二次函数综合题目,考查了二次函数的性质、二次函数的图象与x轴的交点、顶点坐标、圆周角定理、相似三角形的判定与性质、根与系数是关系等知识;本题综合性强,有一定难度.【例2】(四川省泸州市泸县2018届九年级中考数学模拟)如图,在平面直角坐标系xoy中,O为原点
8、,▱ABCD的边AB在x轴上,点D在y轴上,点A的坐标为(﹣2,0),AB=6,∠BAD=60°,点E是BC边上一点,CE=3EB,⊙P过A、O、D三点,抛物线y=ax2+bx+c过点A、B、D三点.(1)求抛物线的解析式;(2)求证:DE是⊙P的切线;(3)若
此文档下载收益归作者所有