二次函数的概念.1.1二次函数教学设计

二次函数的概念.1.1二次函数教学设计

ID:42837203

大小:56.00 KB

页数:3页

时间:2019-09-22

二次函数的概念.1.1二次函数教学设计_第1页
二次函数的概念.1.1二次函数教学设计_第2页
二次函数的概念.1.1二次函数教学设计_第3页
资源描述:

《二次函数的概念.1.1二次函数教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、22.1.1二次函数贾利萍一、教学目标1.知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法。2.过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.3.情感、态度与价值观:通过观察、交流,归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.二、学习重点难点1.重点:理解二次函数的概念,能根据已知条件写出函数解析式;2.难点:理解二次函数的概念。三、教学过程(一)复习回顾:回忆一下什么是函数?都学习过哪些函数(正比例函数、

2、一次函数)?它们的一般形式是怎样的?(二)自主探究、合作交流:问题1:正方体的六个面是全等的正方形,如果正方体的棱长为x,表面积为y,写出y与x的关系。问题2:n支球队参加比赛,每两支队之间进行一场比赛。写出比赛的场数m与球队数n之间的关系式。问题3:某工厂一种产品现在的年产量是20吨,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而定,y与x之间的关系怎样表示?问题4:观察以上三个问题所写出来的三个函数关系式有什么特点?小组交流、讨论得出结论:经化简后都具有怎样的形式

3、。问题5:什么是二次函数?(三)例题讲解:例1、下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项。(1)y=3(x-1)²+1(2)y=x+x-1(3)s=3-2t²(4)y=(x+3)²-x²(5)y=x-2-x(6)v=8πr²例2.当k为何值时,函数为二次函数?注意:二次函数的二次项系数必须是的数。(四)随堂练习:1.下列函数中,(x是自变量),是二次函数的有。Ay=ax2+bx+cBy=x2-4x+1Cy=x2Dy=2+√x2+12.函数y=(m-n)x2+mx+n是二次函数的条件是()Am,

4、n是常数,且m≠0Bm,n是常数,且n≠0Cm,n是常数,且m≠nDm,n为任何实数3.m取何值时,函数是二次函数?4.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。5.矩形绿地的长为30米,宽为20米,如果将长与宽都增加x米,则现在的面积为y平方米,试写出y与x的关系式?6.要用长为20m的铁栏杆,一面靠墙(墙足够长),围成一个矩形的花圃,设垂直于墙的一边AB的长为xm,矩形的面积为ym2,你能写出y与x的函数关系式吗?四、小结思考:本节课你有哪些收获?五、作业布置:必做题:1.正方形的边长为4,如果边长

5、增加x,则面积增加y,求y关于x的函数关系式。这个函数是二次函数吗?2.在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。选做题:1.已知关于x的函数是二次函数,求m的值。2.试在平面直角坐标系画出二次函数和图象六、板书设计22.1.1二次函数复习提问:1、2、3、情境引入:问题1问题2问题3二次函数的定义:例1例2课堂练习:1、2、3、4、、5、6小结:本节课你有哪些收获?作业布置:七、教后反思

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。