欢迎来到天天文库
浏览记录
ID:42833637
大小:47.35 KB
页数:3页
时间:2019-09-22
《三角形的相似判定定理1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2课时 相似三角形的判定(1)知识与技能掌握“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”的判定方法;能够运用三角形相似的条件解决简单的问题.过程与方法经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.情感、态度与价值观培养学生敢于实践、勇于发现、大胆探索、合作创新的精神.重点三角形相似的判定方法1:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.难点三角形相似的判定方法1的运用.一、创设情境,引入新课师:根据相似三角形的定义,三角分别相等、三边
2、成比例的两个三角形叫做相似三角形.那么,两个三角形至少要满足哪些条件就相似呢?能否类比两个三角形全等的条件寻找判定两个三角形相似的条件呢?今天这节课我们就一起来探索三角形相似的条件.二、探究新知问题 平行于三角形一边的直线与其他两边相交所构成的三角形,与原三角形相似吗?师生活动:如图,在△ABC中,DE∥BC,且DE分别交AB,AC于点D,E,△ADE与△ABC有什么关系?直觉告诉我们,△ADE与△ABC相似,我们通过相似的定义证明它,即证明∠A=∠A,∠ADE=∠B,∠AED=∠C,==.由前面的结论
3、可得,=.而中的DE不在△ABC的边BC上,不能直接利用前面的结论.但从要证的=可以看出,除DE外,AE,AC,BC都在△ABC的边上,因此只需将DE平移到BC边上去,使得BF=DE,再证明=就可以了.只要过点E作EF∥AB,交BC于点F,BF就是平移DE所得的线段.先证明两个三角形的角分别相等.如图,在△ADE与△ABC中,∠A=∠A.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.再证明两个三角形的边成比例.过点E作EF∥AB,交BC于点F.∵DE∥BC,EF∥AB,∴=,=.∵四边形DBFE是平行
4、四边形,∴DE=BF,∴=,∴==.这样,我们证明了△ADE和△ABC的角分别相等,边成比例,所以△ADE∽△ABC,因此,我们有如下判定三角形相似的定理.三角形相似的判定方法1:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.(定理的证明由学生独立完成)三、例题讲解例 如图,D,E分别是△ABC的边AB,AC上的点,DE∥BC,AB=7,AD=5,DE=10,求BC的长.解:∵DE∥BC,∴△ADE∽△ABC,∴=,∴BC===14.四、课堂小结本节课学习了:三角形相似的判定方法1
5、:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.本节课主要是探究相似三角形的判定方法1,本课教学力求使探究途径多元化,把学生利用刻度尺、量角器等作图工具做静态探究与应用“几何画板”等计算机软件做动态探究有机结合起来,让学生充分感受探究的全面性,丰富探究的内涵.另外小组合作学习的开展不仅提高了数学实验的效率,而且培养了学生的合作能力.
此文档下载收益归作者所有