资源描述:
《27.2.1相似三角形的判定(一)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、27.2.1相似三角形的判定(一)教学任务分析教学目的:(1)会用符号“∽”表示相似三角形如△ABC∽△;(2)知道当△ABC与△的相似比为k时,△与△ABC的相似比为1/k.(3)理解掌握平行线分线段成比例定理(4)在平行线分线段成比例定理探究过程中,让学生运用“操作—比较—发现—归纳”分析问题.(5)在探究平行线分线段成比例定理过程中,培养学生与他人交流、合作的意识和品质.重点、难点教学重点:理解掌握平行线分线段成比例定理及应用.教学难点:掌握平行线分线段成比例定理应用.一.创设情境谈话复习引入课题(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三
2、角形.在△ABC与△A′B′C′中,如果∠A=∠A′,∠B=∠B′,∠C=∠C′,且.我们就说△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′,k就是它们的相似比.反之如果△ABC∽△A′B′C′,则有∠A=∠A′,∠B=∠B′,∠C=∠C′,且.(3)问题:如果k=1,这两个三角形有怎样的关系?教师活动:明确(1)在相似多边形中,最简单的就是相似三角形。(2)用符号“∽”表示相似三角形如△ABC∽△;(3)当△ABC与△的相似比为k时,△与△ABC的相似比为1/k.活动1(教材P40页探究1)如图27.2-1),任意画两条直线l1,l2,再画三条与l1,l2相交的
3、平行线l3,l4,l5.分别量度l3,l4,l5.在l1上截得的两条线段AB,BC和在l2上截得的两条线段DE,EF的长度,AB︰BC与DE︰EF相等吗?任意平移l5,再量度AB,BC,DE,EF的长度,AB︰BC与DE︰EF相等吗?教师活动:教师出示探究,提出问题.学生活动:学生操作画图,量度AB,BC,DE,EF的长度并计算比值,小组讨论,共同交流,回答结果.师生活动:提出问题,AB︰AC=DE︰(),BC︰AC=()︰DF,师生共同交流.强调“对应线段的比是否相等”师生归纳总结:(板书并朗读)平行线分线段成比例定理三条平行线截两条直线,所得的对应线段的比相等。在活动中,
4、师生应重点关注:平行线分线段成比例定理中相比线段同线;活动2平行线分线段成比例定理推论思考:1、如果把图27.2-1中l1,l2两条直线相交,交点A刚落到l3上,如图27.2-2(1),,所得的对应线段的比会相等吗?依据是什么?2、如果把图27.2-1中l1,l2两条直线相交,交点A刚落到l4上,如图27.2-2(2),所得的对应线段的比会相等吗?依据是什么?学生活动:学生观察思考,小组讨论回答;师生归纳总结:(板书并朗读)平行线分线段成比例定理推论平行于三角形一边的直线截其他两边(或两边延长线),所得的对应线段的比相等二.通过练习巩固平行线分线段成比例定理及其推论活动3练习
5、问题:如图,在△ABC中,DE∥BC,AC=4,AB=3,EC=1.求AD和BD.教师活动:教师提出问题;学生活动:学生阅题,小组讨论后解答问题.教师活动:在活动中,教师应重点关注:在练习中检查学生对“平行线分线段成比例定理及推论”理解三.小结巩固活动4(1)谈谈本节课你有哪些收获.“三角形相似的预备定理”.这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.(2)相似比是带有顺序性和对应性的:如△ABC∽△A′B′C′的相似比,那么△A′B′C′∽△ABC的相似比就是,它们的关系是互为倒数.这一点在教学中科结
6、合相似比“放大或缩小”的含义来让学生理解;(3)作业1.如图,△ABC∽△AED,其中DE∥BC,找出对应角并写出对应边的比例式.2.如图,△ABC∽△AED,其中∠ADE=∠B,找出对应角并写出对应边的比例式.