欢迎来到天天文库
浏览记录
ID:42812968
大小:198.00 KB
页数:8页
时间:2019-09-23
《23.1 图形的旋转 (3)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《图形的旋转》教学设计教学目标知识与技能(1)了解生活中旋转现象的广泛存在;(2)掌握旋转的有关概念,理解旋转变换也是图形的一种基本变换;(3)会找出旋转前后图形中的对应点、对应线段、对应角、旋转中心、旋转角;(4)理解图形的旋转变换是由旋转中心、旋转角和旋转方向所决定的,探索和发现旋转后图形上的每一点都绕着旋转中心转动了相同的角度,但图形的形状和大小都没有变化;过程与方法通过观察、操作、交流、归纳等过程,培养学生的动手能力、观察能力、探究问题的能力以及与人合作交流的能力。经历探索图形在旋转变换中的变化情况的过程,体会旋转变换对研究图形变化的重要性。情感态度与价值观经历对生活中旋转图形的观察
2、、讨论、实践操作,使学生充分感知数学美,培养学生学习数学的兴趣和热爱生活的情感;通过小组合作交流活动,培养学生合作学习的意识和研究探索的精神。重点与难点本节课的重点是旋转的有关概念及性质。难点是概念的形成过程与性质的探究过程。教学过程(一)创设情景,引入新知81.向学生展示有关的图片:(1)时钟上的秒针在不停的转动;(并介绍顺时针方向和逆时针方向)(2)大风车的转动;(3)飞速转动的电风扇叶片;(4)汽车上的括水器(5)由平面图形转动而产生的奇妙图案。通过这些画面的展示(1)切身感受到我们身边除了平移、轴对称变换等图形变换之外,生产、生活中广泛存在着转动现象,从而产生对这种变换进一步探究的强
3、烈欲望;(2)为本节课探究问题作好铺垫。情景问题:这些情景中的转动现象,有什么共同特征?8设计意图:鼓励学生通过观察、思考和讨论,用自己的语言来描述这些转动的共同特征,初步感受转动的本质是绕着某一点,旋转一定的角度这两点。同时,让学生再举一些类似的例子,以引导学生寻找、认识生活中的旋转现象,并揭示本节的研究课题-----图形的旋转。(二)探索新知,形成概念1.建立旋转的概念(1)试一试,请同学们尝试用自己的语言来描述以下旋转.抽象出点的旋转AB(图1)O··○○○问题:单摆上小球的转动由位置A转到B,它绕着哪一个点转动?沿着什么方向(顺时针或逆时针)?转动了多少角度?抽象出线的旋转·OABC
4、D(图2)抽象出三角形的旋转·OABCFDE(图3)8图1:在同一平面内,点A绕着定点O旋转某一角度得到点B;图2:在同一平面内,线段AB绕着定点O旋转某一角度得到线段CD;图3:在同一平面内,三角形ABC绕着定点O旋转某一角度得到三角形DEF。观察了上面图形的运动后,引导学生进入本课第一个学习目标:图形旋转的概念;本环节学生先独立尝试,再同学之间讨论交流、总结,在此过程中以培养学生的抽象概括能力,同时让学生体会到合作交流的必要性,随后,给出旋转的定义:像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转(rotation).点O叫做旋转中心,转动的角叫做旋转角。重点突出旋转的三个要
5、素:旋转中心、旋转方向和旋转角度。(2)情景问题:①请同学们观察图3,点A,线段AB,∠ABC分别转到了什么位置?②请找出图3中其他的对应点、对应线段、对应角,并指出旋转中心和旋转角度。设计意图:为学生进入本节课的第二个学习目标。①点明图形旋转中对应点、对应线段及对应角的概念;②让学生及时巩固并理解旋转及其相关概念,并为下面探究旋转的性质作好物质与精神上的准备。本环节教学中,教师及时观察学生的学习情况和学习进度,碰到学生中的普遍性问题,在进行适当的探讨后,利用谈话讨论的形式进行解决。CABOD2.应用旋转的概念解决问题这一环节让学生进行问题的研究与解答,培养应用数学知识的意识及解决数学问题的
6、能力。(1)如图,△ABO绕点O旋转得到△CDO,则:点B的对应点是点_____;8线段OB的对应线段是线段______;线段AB的对应线段是线段______;∠A的对应角是______;∠B的对应角是______;旋转中心是点______;旋转的角是______。设计意图:①及时巩固新知,使每个学生都有收获;②感受成功的喜悦,肯定探索活动的意义。(2)如图,如果正方形CDEF与正方形ABCD是一边重合的两个正方形,那么正DCABEF方形CDEF能否看成是正方形ABCD旋转得到?如果能,请指出旋转中心、旋转方向、旋转角度及对应点。··ABODC(3)如图,香港特别行政区区旗中央的紫荆花图案由
7、5个相同的花瓣组成,它是由其中的一瓣经过几次旋转得到的?旋转角∠AOB多少度?你知道∠COD等于多少度吗?设计意图:加深对旋转概念的理解,及时巩固新知识,对于第2题要注重引导学生多角度分析解决,第3题求∠AOB的度数学生可以根据五分周角容易得到,8而学生在求∠COD的度数时,更多的是凭数学直觉或猜测。由此,可以比较自然地引导学生通过实验操作,利用度量等方法去探究旋转的有关性质。(三)实践操作,再探新知做一做:
此文档下载收益归作者所有