24.1圆的有关性质教案

24.1圆的有关性质教案

ID:42810855

大小:126.50 KB

页数:3页

时间:2019-09-22

24.1圆的有关性质教案_第1页
24.1圆的有关性质教案_第2页
24.1圆的有关性质教案_第3页
资源描述:

《24.1圆的有关性质教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第二十四章 圆24.1 圆的有关性质24.1.4 圆周角第1课时 圆周角定理及推论教学目标1.了解圆周角的概念.2.理解圆周角的定理及其推论设置情景,给出圆周角的概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题.教学重难点圆周角的定理、圆周角的定理的推导及运用它们解题.教学过程一、教师导学(学生活动)请同学们口答下面两个问题.1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢?老师点评:顶点在圆心上的角,有

2、一组等量的关系,如果顶点不在圆心上,在其它的位置上呢?如果在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.二、合作与探究问题:如图所示的☉O,我们在射门游戏中,设E、F是球门,设球员们只能在所在的☉O其它位置射门,如图所示的A、B、C点.通过观察,我们可以发现像∠EAF、∠EBF、∠ECF这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.现在通过圆周角的概念和度量的方法回答下面的问题.1.一段弧所对的圆周角的个数有多少个?2.同弧所对的圆周角的度数是否发生变化?3.同

3、弧上的圆周角与圆心角有什么关系?(学生分组讨论)提问二到三位同学代表发言.老师点评:1.一段弧所对的圆周角的个数有无数多个.2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的.33.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.”(1)设圆周角∠ABC的一边BC是☉O的直径,如图所示∵∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO.∵OA=OB,∴∠ABO=∠BAO.∴∠AO

4、C=2∠ABO.∴∠ABC=1/2∠AOC.(2)如图,圆周角∠ABC的两边AB、BC在一条直径OD的两侧,那么∠ABC=1/2∠AOC吗?请同学们独立完成这道题的说明过程.第(2)题图第(3)题图(3)如图,圆周角∠ABC的两边AB、BC在一条直径OD的同侧,那么∠ABC=1/2∠AOC吗?请同学们独立完成证明.现在,如果再画一个任意的圆周角∠AB'C,同样可证得它等于同弧上圆心角的一半,因此,同弧上的圆周角是相等的.从(1)、(2)、(3)我们可以总结归纳出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角

5、相等,都等于这条弧所对的圆心角的一半.进一步,我们还可以得到下面的推导:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.下面,我们通过这个定理和推论来解一些题目.【例】如图,AB是☉O的直径,BD是☉O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?3分析:BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,只要连接AD,证明AD是高或是∠BAC的平分线即可.解:BD=CD.理由是:连接AD∵AB是☉O的直径,∴∠ADB=90°,即AD⊥BC.又

6、∵AC=AB,∴BD=CD.三、巩固练习教材P88 练习 1、2、3、4、5四、总结提升(学生归纳,老师点评)本节课应掌握:1.圆周角的概念;2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4.应用圆周角的定理及其推导解决一些具体问题.五、布置作业教材P89 习题24.1 6、7、14、17.3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。