探究中小学数学知识的衔接问题(2)

探究中小学数学知识的衔接问题(2)

ID:42749315

大小:29.50 KB

页数:7页

时间:2019-09-20

探究中小学数学知识的衔接问题(2)_第1页
探究中小学数学知识的衔接问题(2)_第2页
探究中小学数学知识的衔接问题(2)_第3页
探究中小学数学知识的衔接问题(2)_第4页
探究中小学数学知识的衔接问题(2)_第5页
资源描述:

《探究中小学数学知识的衔接问题(2)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、探究中小学数学知识的衔接问题一、从数到代数式小学生在六年中学习的主要是具体的数以及具体的数之间的运算,而到了初一接触到的是用字母表示数,建立起了代数概念。在我们看来,“代数”,就是用字母来表示一个数,但实际上绝非如此。初一的数学先是讲了“用字母表示数”,然后就开始深入到了“方程”,再由此展开了“包含字母的式子”这一概念,然后又开始了关于“函数”的学习。其实,细心的人会发现,初中里学习的内容多是小学内容的扩展。小学数学与初中数学实际上是有很多关联的。只要从小六到初一的过度在老师的引导下,找出“数”与“式”之间的内在联系以

2、及区别,在知识间架起衔接的桥梁,也为后面的更多内容打下坚实的基础,这样才能在众多的考试面前不乱阵脚,游刃有余。二、从“算术法”到“方程”小学的应用题大多都可以用算术法来解题,所谓“算术法”就是指一个全部由数字和符号构成的式子,因为计算简便,成了小学六年来学生们解题的“主菜”,即使小学里学习了方程,但也只能算是“配菜”而已。可进入初中后就不同了:自从初一上学期详细的学习了一元一次方程后,渐渐的,凡是应用题第一反应就是设未知数列方程,而对原先的“算术法”没什么印象了。这是因为,用算术法来解应用题大多要用逆向思维,而方程所用

3、的大多是正向思维,两者孰轻孰重一目了然。初中数学与小学数学的不同之处主要体现在知识范围与思维方式两个方面,要学好初中数学,一定要让自己的思维更富逻辑性,要学会用数学的眼光去发现问题,分析问题和解决问题。经过十几年的教学经验和实践表明,培养学生把解题后的反思应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习效果、培养能力的行之有效的方法。解题是学生学好数学的必由之路,但不同的解题指导思想就会有不同的解题效果,养成对解题后进行反思的习惯,即可作为学生解题的一种指导思想。三、初中数学与小学数学如何衔接初一《代数》教材

4、,涉及数、式、方程和不等式,这些内容与小学数学中的算术数、简易方程、算术应用题等知识有关,但初一数学内容比小学内容更为丰富,抽象,复杂,在教学方法上也不尽相同;而小学学生的数学学习习惯和学习方法与中学生应有的学习习惯也不尽一致,因此,在教学过程中必须注意中小学数学的衔接.一)、内容上的衔接1.算术数与有理数小学数学是在算术数中研究问题的,而中学数学一开始就有有理数,因此,从算术数过渡到有理数是一大转折,为此,须抓住以下几点:(1)讲清楚具有相反意义的量,是引入负数的关键.这里,可以通过多举些学生熟悉的实际例

5、子,使学生了解引入负数的必要性及负数的意义.例如,如何区别零上温度和零下温度这两个具有相反意义的量呢?又如,珠穆朗玛峰的海拔高度和吐鲁番盆地的海拔高度是具有相反意义的量等等,在教学中可以多举一些例子,让学生了解为了区别具有相反意义的量必须引入一种新的数——负数.(2)逐步加深对有理数的认识首先,让学生清楚地认识到有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,对有理数的概念的理解,运算的掌握就简便多了.其次,让学生清楚有理数的分类与小学的算术数相比只是多了负整数和负

6、分数.(3)有理数的运算,其实是由两部分组成:小学学习过的运算加上中学学习过的“符号”确定,只要特别注意符号的确定,那么有理数的运算就不成为难点了.如:(-2)+(-4)先确定符号为“-”再把数字部分相加即可,即(-2)+(-4)=-(2+4)=-62.数与代数式从小学数学的特殊的、具体的数到中学的一般的、抽象的代数式,这是数学思维上的一次飞跃,因此,在教学时,要逐步引导学生过好这一关.(1)用字母表示数的必要性以学生在小学学过的用字母表示数的例子,如:加法交换律a+b=b+a;乘法交换律ab=

7、ba及一些公式如速度公式v=s/t.正方形周长、面积公式L=4a,S=a2等,说明由字母表示数能简明、扼要地表达数量之间的关系.可以更方便地研究和解决问题.(2)加深对字母a的认识许多学生由于对字母a表示数的意义理解不透,经常错误地认为-a一定是负数,因此,在教学上必须帮助学生理解a的含义,知道a可能是负数,而-a不一定是负数等问题.首先让学生弄清楚符号“-”的三种作用.①运算符号,如5-3表示5减3,2-4表示2减4;②性质符号,如-1表示负1,5+(-3)表示5加上负3;③在某个数前面加上“-”号,表示

8、该数的相反数,如-3表示3的相反数,-(-3)表示-3的相反数,-a表示a的相反数.然后再说明a表示有理数,可以是正数,可以是负数,亦可以是零.即包括符号和数字,这样,学生才能真正理解a,-a所包含的意义.(3)加强数学语言的训练及列代数式的训练如:a是正数表示为a>0,a是负数表示为a<0,某数a的2倍表示为2a等.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。