欢迎来到天天文库
浏览记录
ID:42694124
大小:18.50 KB
页数:3页
时间:2019-09-20
《培养几何直观能力让数1》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、培养几何直观能力让数学“活”起来高安市第三小学:刘永维当我翻开《数学新课标》,就被一个全新教学理念深深地吸引,那就是——几何直观。书中是这样说的:“几何直观是指利用图形描述几何或者其他数学问题、探索解决问题的思路、预测结果。简单的说——就是用图形说话,用图形描述问题,用图形讨论问题,这是一种基本的数学素质。”读到这时我终于茅塞顿开,因为在自己还是学生的时候就是用这种方法学习数学的,既简单又有趣,只是不知道怎么用文字来表达。现在自己已经是教了三年的数学老师,也可以说一直在尝试如何提高小学生的几何直观能力,因为它反映了一个学生能否把他的理解用一种适当的方式表
2、达出来,能否用图形的方式来理解一个比较复杂的问题。几何直为观不仅在“图形与几何”的学习中发挥着不可替代的作用,而且贯穿在整个数学学习过程中。几何直观能力可以说是学生学习数学的金钥匙,所以教师应十分重视学生几何直观能力的培养,下面我就从自己的教学实中践中谈谈培养学生几何直观能力的方法。-•注重直观感知。数学中有很多推理的过程,需要学生自己凭借生活经验,采用有效的数学手段去解决。这里,几何直观就扮演着至关重要的角色。学生要是能善于运用几何直观,很多问题就能直观形象的展现岀来,理解的问题攻克了,解决就不是问题。所以教学中,教师要再学生面对问题时,让他们充分的思
3、考,探究解决问题的多种方法,让学生体会到几何直观是解决问题的一种有效手段,感知几何直观的重要性。例如在教学二年级的“分一分与除法”时,教师要给学生创造充分的活动空间,让学生亲自动手分一分,圈一圈,画一画,摆一摆等,体验平均分的过程,加深学生的直观感知,从而理解平均分的意义及与除法的关系,辨析出乘除法之间的不同,为后面的解决问题打下坚实的基础。二・重视数与形的结合。我国著名的数学家华罗庚说「形缺数时难入微,数缺形时少直观”。“数形结合”的思想是重要的数学思想,其实质是使数量关系和空间形式巧妙和谐地结合起来,将抽象的数学语言与直观的图形结合起来。小学数学教材
4、中特别注重这种思想的渗透,借助几何直观,可以把数形结合思想更好地反映出来。例如:小丽前面有9人,后面有4人,这一队有多少人?“对于一年级的学生,他们有时很难想到题中还有个隐含的“小丽”,往往列出来的算是“9+4二13(人)”。要是借助直观图形展现出排队的情况,学生就非常醒目的发现队伍由3部分构成,前面的人、小丽和小丽后面的人,算式也自认会变成u9+1+4=14(人)”。”学生就会联想起直观图的作用,以直观图形作桥梁,分析题中数量关系,从而解决数学问题。三•重视直观图形与数学符号的合情转换。直观图形的应用要能充分的体现数量关系,展现数学的本质。有时两者合情
5、转换更能体现数与形的密切关系。例如在统计的教学中,统计图中一格代表多少数量,一定的数量需要几格来表示,从图中你能得到哪些数学信息等等。学生在画图和分析数据中了解直观图形和数学符号的相互转化,体会数与形的统一。四•注重多媒体应用。多媒体技术不但给学生展现出丰富多彩的图形世界,提供直观的演示和展示,表现图形的直观变化,也给学生展示其不易想像的图形,扩大其空间视野,并多了一条解决问题的途径。多媒体的应用给教师的教学提供了有力的工具,也为学生的学建立了直观基础。例如教学钟表一节课时,由于课堂时间有限,要验证1时=60分时,要是仅仅靠老师的讲,学生只能是机械记忆,
6、很难真正理解。利用多媒体展现时针走一大格分针正好走一圈的过程,给予学生视觉感知,使他们从中发现时和分的关系,学生的印象才深刻,才能真正的理解其中所以然,后面的解决问题才能有依据,做到得心应手。总之几何直观能力是一种非常重要的数学学习能力,它已经成为数学界和数学教育界关注的问题,几何直观能力的培养应随时体现在我们适时的教学中。教学中应关注学生的基本生活经验和生活经历,注重引导学生把生活中对图形的感受与有关知识建立联系,在学生积极主动的参与学习中,几何直观能力的培养不是一道题解决,不是一节课讲授,而是潜移默化的一种方法的探究和深入。在数学教学中,教师应该指导
7、学生养成一种用直观的图形语言,刻画、思考问题的习惯,有机渗透数学思想方法的同时,培养学生的几何直观能力,提高学生的思维能力和解决问题的能力,让数学真正能活学活用。
此文档下载收益归作者所有