高二数学选修2-2导数及其应用试题

高二数学选修2-2导数及其应用试题

ID:42641192

大小:615.51 KB

页数:9页

时间:2019-09-19

高二数学选修2-2导数及其应用试题_第1页
高二数学选修2-2导数及其应用试题_第2页
高二数学选修2-2导数及其应用试题_第3页
高二数学选修2-2导数及其应用试题_第4页
高二数学选修2-2导数及其应用试题_第5页
资源描述:

《高二数学选修2-2导数及其应用试题》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、高二数学选修2-2第一章导数及其应用测试题一选择题1.设,则().A.B.C.D.2.设,则().A.B.C.D.3.已知,则的值为().A.B.C.D.不存在4.曲线在点处的切线方程为().A.B.C.D.5.已知函数的图象与轴有三个不同交点,,且在,时取得极值,则的值为()A.4B.5C.6D.不确定6.在上的可导函数,当取得极大值,当取得极小值,则的取值范围是().A.B.C.D.7.函数在区间的值域为().A.B.C.D.8.积分().第9页A.B.C.D.9.由双曲线,直线围成的图形绕轴旋转一周所得旋转体的体积为

2、()A.B.C.D.10.由抛物线与直线所围成的图形的面积是().A.B.C.D.11.设底面为等边三角形的直棱柱的体积为,则其表面积最小时,底面边长为().A.     B.C.     D.12.某人要剪一个如图所示的实心纸花瓣,纸花瓣的边界由六段全等的正弦曲线弧组成,其中曲线的六个交点正好是一个正六边形的六个顶点,则这个纸花瓣的面积为().A. B.  C.D.第Ⅱ卷(非选择题,共90分)二、填空题(每小题4分,共16分。请将答案填在答题卷相应空格上。)13.曲线在点处的切线与轴、直线所围成的三角形的面积为,则___

3、______。14.一点沿直线运动,如果由始点起经过秒后的位移是,那么速度为零的时刻是_______________。15._______________.16.____________。三、解答题:(本大题共5小题,共74分,解答应写出文字说明,证明过程或演算步骤)(17)(本小题满分10分)第9页已知向量,若函数在区间上是增函数,求的取值范围。(18)(本小题满分12分)已知函数在处取得极值.(1)讨论和是函数的极大值还是极小值;(2)过点作曲线的切线,求此切线方程.19已知函数(1)求的单调区间;(2)求曲线在点(1

4、,)处的切线方程;(3)求证:对任意的正数与,恒有.第9页(20)(本小题满分12分)用半径为的圆形铁皮剪出一个圆心角为的扇形,制成一个圆锥形容器,扇形的圆心角多大时,容器的容积最大?(21)(本小题满分12分)直线分抛物线与轴所围成图形为面积相等的两个部分,求的值.(22)(本小题满分14分)已知函数。(1)若,且函数存在单调递减区间,求的取值范围。(2)设函数的图象与函数的图象交于点,过线段的中点作轴的垂线分别交、于点。证明:在点处的切线与在点处的切线不平行。第9页新课改高二数学选修2-2第一章导数及其应用测试题参考答

5、案一、选择题:(本大题共10小题,每小题5分,共50分。)123456789101112BCABBCABBACB二、填空题:(本大题共4小题,每小题4分,共16分)(13)、(14)、(15)、(16)、三、解答题:(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤)(17)(本小题满分10分)解:由题意知:,则┅┅┅┅┅┅┅┅┅┅(3分)∵在区间上是增函数,∴即在区间上是恒成立,┅┅┅┅┅┅┅┅┅┅(5分)设,则,于是有∴当时,在区间上是增函数┅┅┅┅┅┅┅┅┅┅(8分)又当时,,在上,有,即时,在区间上

6、是增函数当时,显然在区间上不是增函数∴┅┅┅┅┅┅┅┅┅┅(10分)(18)(本小题满分12分)解:(1),依题意,,即解得┅┅(3分)∴,∴第9页令,得若,则故在上是增函数;若,则故在上是减函数;所以是极大值,是极小值。┅┅┅┅┅┅┅┅(6分)(2)曲线方程为,点不在曲线上。设切点为,则由知,切线方程为┅┅┅┅┅┅┅┅┅┅(9分)又点在切线上,有化简得,解得所以切点为,切线方程为┅┅┅┅┅┅(12分)(19)(本小题满分14分)解:令,得:┅┅┅┅┅┅┅(2分)当变化时,的变化情况如下表:-单调递增极大值单调递减极小值单

7、调递增∴极大值为,极小值为又,故最小值为0。┅┅┅┅┅┅┅┅┅┅(6分)最大值与有关:(1)当时,在上单调递增,故最大值为:┅┅┅┅┅┅┅┅┅┅(8分)(2)由,即:,得:,∴或又,∴或┅┅┅┅┅┅┅┅┅┅(10分)第9页∴当时,函数的最大值为:┅┅(12分)(3)当时,函数的最大值为:┅┅┅┅┅┅┅┅┅┅(14分)(20)(本小题满分12分)解:设圆锥的底面半径为,高为,体积为,则由,所以∴,令得┅┅┅┅┅┅┅(6分)易知:是函数的唯一极值点,且为最大值点,从而是最大值点。∴当时,容积最大。┅┅┅┅┅┅┅┅┅┅(8分)把

8、代入,得由得即圆心角时,容器的容积最大。┅┅┅┅┅┅┅(11分)答:扇形圆心角时,容器的容积最大。┅┅┅┅(12分)(21)(本小题满分12分)解:解方程组得:直线分抛物线的交点的横坐标为和┅┅┅┅┅┅┅┅┅┅(4分)抛物线与轴所围成图形为面积为┅┅┅┅┅(6分)由题设得第9页┅┅┅┅┅┅┅(10分)又

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。