资源描述:
《高考数学人教A版理一轮复习第8章平面解析几何第8节课时分层训练52含解析1》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、课时分层训练(五十二)曲线与方程A组基础达标(建议用时:30分钟)一、选择题1・方程(2x+3y~1)(y]x~3—1)=0表示的曲线是(A.两条直线B.两条射线C.两条线段D.一条直线和一条射线]2x+3y—1=0,ID[原方程可化为]、或a/x-3-1=0,即2x+3y—l=lx—3200(x23)或x=4,故原方程表示的曲线是一条直线和一条射线.]2.(2017-银川模拟)已知点P是直线2x~y+3=0上的一个动点,定点M(—1,2),0是线段延长线上的一点,且PM=MQf则0点的轨迹方程是()A.2x+y~~1=0
2、B.2x—y—5=0C・2x—y—1—0D.2x—y+5=0D[由题意知,M为P0中点,设Q(x9y)f则卩为(一2—兀,4一叨,代入2x一尹+3=0,得2x-y+5=0.J3.设点/为圆(x~l)2+y2=l上的动点,刊是圆的切线,且
3、刊
4、=1,贝屏点的轨迹方程为()A.y2=2xB.(x—l)2+y2=4C・y2=~2xD.(x—l)2+y2=2D[如图,设P(x,y)f圆心为M(l,0)・连接M/f,则伽丄刃,且
5、MJ
6、=1.又・.・
7、刃
8、=1,・•・
9、PM
10、=寸
11、肠+閱2=迈,贝屮/>网2=2,.・・点尸的轨迹方程为(兀一1
12、尸+F=2.〕2.(2016-洛阳模拟)设过点P(x,叨的直线分别与x轴的正半轴和尹轴的正半轴交于〃两点,点0与点P关于y轴对称,O为坐标原点.若BP=2PA,且OQAB=h则点P的轨迹方程是()A.
13、x2+3/=1(x>0,y>0)3B.討一3^=1(兀>0,p>0)3C・3”一尹2=1(牙〉0,卩>0)D.3x2+
14、y2=l(x>0,y>0)A[设A(af0)fB(0,b),Q0,b>0.由丽=2茹,得(x,y-b)=2(a-x,一叨,3即a=^x>Ofb=3y>0.点0(—x,y),故由OQAB=,得(一x,尹)(一a,b)
15、=l,即ax+by=.3将a,b代入ax+by=l,得所求的轨迹方程为2^2+3;;2=l(x>0,y>0)・]3.平面直角坐标系中,已知两点力(3,1),B(T,3),若点C满足OC=hOA+hOB(O为原点),其中八A2eR,且久]+局=1,则点C的轨迹是()【导学号:01772337]A.直线B.椭圆C.圆D.双曲线A[设C(x,y),则OC=(x,y),鬲=(3,1),03=(-1,3).v5c=Ai04+a205,Jx=32]—局,=3久2,又久1+22=1,.・・x+2y—5=0,表示一条直线.]二、填空题2.平面上有
16、三个点/(一2,y),彳0,期,C(x,y),若腐丄荒,则动点C的轨迹方程是【导学号:01772338]y1=8x[M=0,尹)=(2,BC=(x,^)—0,AB丄BC,:.ABBC=0,9扌)=o‘即y~8%./.动点C的轨迹方程为尸=8%.]2.若点P到直线尹=一1的距离比它到点(0,3)的距离小2,则点P的轨迹方程是.【导学号:01772339]x=Uy[由题意可知点P到直线尹=一3的距离等于它到点(0,3)的距离,故点P的轨迹是以点(0,3)为焦点,以y=—3为准线的抛物线,且p=6,所以其标准方程为x2=l2y.]23.
17、(2017-中原名校联考)已知双曲线牙一/=1的左、右顶点分别为⑷,力2,点P(xi,尹1),0(X1,—V1)是双曲线上不同于力1,力2的两个不同的动点,贝I」直线时与A2Q交点的轨迹方程为・2丁+b=l(xH0且兀工审)[由题设知^1(-^2,0),竝迈,0),则有直线/屮的方程为y=~Xi(x+迈),①2x=,兀1问1尸XI联立①②,解得S直线力20的方程为7=_*(兀_迈),②旳_丫2r2X1=P<③X,22.•.xHO,且x<[2.V点P(xi,刃)在双曲线牙—y2=]上,Ay—j?j=1.将③代入上式,整理得所求轨
18、迹的方程为亍+b=l(xHO,且xH垃吃).]三、解答题22.如图8-8-3所示,动圆x2+y2=t2'19、=1—等.④将④代入③得寸一尸=1(兀<一3,严0).10分因此点M的轨迹方程为g—y2=l(x<—3,y<0).12分3.(2017•广州模拟)在圆x2+/=4上任取一点P,设点P在兀轴上的正投影为点D当点P在圆上运动时,动点M满足