【教案】第5章章末复习

【教案】第5章章末复习

ID:42505480

大小:190.50 KB

页数:4页

时间:2019-09-16

【教案】第5章章末复习_第1页
【教案】第5章章末复习_第2页
【教案】第5章章末复习_第3页
【教案】第5章章末复习_第4页
资源描述:

《【教案】第5章章末复习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、教师:学生:时间:年月日段一、授课目的与考点分析:二次根式复习教案二、授课内容:【知识回顾】1.二次根式:式子(≥0)叫做二次根式。2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。4.二次根式的性质:(>0)(<0)0(=0);(1)()2=(≥0);(2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得

2、尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=·(a≥0,b≥0);(b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及

3、多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1),其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1);(2)例3、在根式1),最简二次根式是()A.1)2)B.3)4)C.1)3)D.1)4)例4、已知:例5、(2009龙岩)已知数a,b,若=b-a,则(  )A.a>b       B.a

4、    C.-;     D.例2.把(a-b)化成最简二次根式例3、计算:例4、先化简,再求值:,其中a=,b=.例5、如图,实数、在数轴上的位置,化简:3、在实数范围内分解因式例.在实数范围内分解因式。(1);                (2)4、比较数值(1)、根式变形法当时,①如果,则;②如果,则。例1、比较与的大小。(2)、平方法当时,①如果,则;②如果,则。例2、比较与的大小。(3)、分母有理化法通过分母有理化,利用分子的大小来比较。例3、比较与的大小。(4)、分子有理化法通过分

5、子有理化,利用分母的大小来比较。例4、比较与的大小。(5)、倒数法例5、比较与的大小。(6)、媒介传递法适当选择介于两个数之间的媒介值,利用传递性进行比较。例6、比较与的大小。(7)、作差比较法在对两数比较大小时,经常运用如下性质:①;②例7、比较与的大小。(8)、求商比较法它运用如下性质:当a>0,b>0时,则:①;②例8、比较与的大小。5、规律性问题例1.观察下列各式及其验证过程: ,验证:;验证:.(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果,并进行验证;(2)针对上述各式

6、反映的规律,写出用n(n≥2,且n是整数)表示的等式,并给出验证过程.例2.已知,则a_________发展:已知,则a______。例3、化简下列各式:(1)              (2)例4、已知a>b>0,a+b=6,则的值为()A.B.2C.D.例5、甲、乙两个同学化简时,分别作了如下变形:甲:==;    乙:=。其中,( )。A.甲、乙都正确                   B.甲、乙都不正确C.只有甲正确                    D.只有乙正确本次课后作业四、

7、学生对于本次课的评价:○特别满意○满意○一般○差学生签字:五、教师评定:1、学生上次作业评价:○好○较好○一般○差2、学生本次上课情况评价:○好○较好○一般○差教师签字教务签字:___________

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。