资源描述:
《量子力学第章》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、量子力学第4章-1第四章:力学量用算符表示P18615.设A与B为厄米算符,则1?AB?BA?和1?AB?BA?也是厄米算符。由此证明,任何一个算符F均22i可分解为F?F??iF?,F?与F?均为厄米算符,且F??11?F?F??,F??F?F??22i?111?1?证:ⅰ)??AB?BA????B?A??A?B????BA?AB???AB?BA?222?2?1??AB?BA?为厄米算符。21?1?ⅱ)??AB?BA????B?A??A?B????1?BA?AB??1?AB?BA??2i2i2i?2i?1??AB?BA?也为厄米算
2、符。2i???ⅲ)令F?AB,则F??AB??BA?BA,??且定义F???11?F?F??,F??F?F??(1)22i?由ⅰ),ⅱ)得F??F?,F??F?,即F?和F?皆为厄米算符。则由(1)式,不难解得F?F??iF?4.1证(An是实数)是厄密算符证明:此算符不能简化,可以用多次运算证明,首先假定已经证明动量是厄密算符,则运用这个关系于下面的计算:?(?n?1?)d??)?d??????AP?n?d???An???P?n?d???An???P??F(PPn????????????n?????)??(?n?1?)d???An
3、(P?)??P?(?n?2?)d???An???(PPP?????P??)?P?(?n?3?)d???An???(PP?2?)?P?(P?2?)?P?(P?n?3?)d???An(P?n?4?)d???An???(P?2?)?P?(P?n?4?)d?????An???(P?)?]??d?????[F(P??)满足厄密算符的定义。F(P?nxm?xmpnp4.2证明?Anm(Anm实数)是厄密算符。m?n2?都是厄密算符,即:?,x(证明)方法同前题,假定已经证明p???????????d?????(p??)???d??p??d???
4、x????(x?)???d?又按题意得证算符是一维的??nx?m?dx?????p?(p?n?1x?m?)dx??(p??)?(p?n?1x?m?)dx???p??n?)?x?m?dx??(x?p?n?)?x?m?1?dx????(p?mp?n?)??dx????(x??mx?m不是厄密算符,但满足这证明p?nmmn???????(px)?dx?(xp?)??dx??同理可证明????mp?n)?dx??(p?nx?m?)???dx?(x将前二式相加除2,得?nx?m?x?mp?n?mp?n?p?nx?mpx?dx??(?)??dx
5、???22?nx?m?x?mp?n?nx?m?x?mp?npp因此是厄密算符,因此?Anm也是。22m?n??0?作为厄密算符0??B??)则本题可用较简方式来证明如下:?的定义,并设(A???A???)??(?B又假定用0???x????p??x因为p??(p?)x??(x?)所以有p?nx?m)??{(p?n)?(x?m)}??(x?m)?(p?n)??x?mp?n(p同理有n?nm?m(x?mp?n)??{(x?m)?(p?n)}??(p?n)?(x?m)??p?nx?m相加除2,得:这证明右方一式是厄密算符。4.3设?q,p
6、??i?,f(q)是q的可微函数,证明下述各式:[一维算符](1)?q,p2f(q)??2i?pf.(证明)根据题给的对易式及?q,f(q)??0;?q,p2f??qp2f?p2fq?qp2f?p2qf?qppf?p(pq)f?qppf?p(qp?i?)f?(qp?pq??i)pf?2?ipf(2)[q,pf(q)p]?i?(fq?pf)(证明)同前一论题[q,pfp]?qpfp?pfpq?qpfp?pf(qp?hi)?qpfp?pfpq?hipf?qpfp?pqfp?hipf?(qp?pq)fp?hipf?hi(fp?pf)(3)
7、[q,f(q)p2]?2i?fp[证明]同前一题论据:[q,fp2]?qfpp?fppq?fqpp?fppq?fqpp?fp(qp??i)?fqpp?fpqp??ifp?f(qp?pq)p??ifp?2?ifp(4)[p,p2f(q)]??ip2f’[证明]根据题给对易式外,另外应用对易式[p,f(q)]??if’(f’)?dfdq[p,p2f]?p2f?p2fp?p2(pf?fp)?p2[p,f]??ip2f’~91~(5)[p,pf(q)p]??pf’p(证明)论据同(4):i?pf’pi[p,pfp]?p2fp?pfp2?p(
8、pf?fp)p?(6)[p,f(q)p]?2?f’p2(证明)论据同(4):i?f’p2i[p,fp2]?pfp2?fp2?(pf?fp)p2?4.4设算符A,B与它们的对易式[A,B]都对易。证明(甲法)递推法,对第一公式左方,先将