历年高考数学圆锥曲线试题汇总3解答题

历年高考数学圆锥曲线试题汇总3解答题

ID:42427645

大小:2.56 MB

页数:56页

时间:2019-09-14

历年高考数学圆锥曲线试题汇总3解答题_第1页
历年高考数学圆锥曲线试题汇总3解答题_第2页
历年高考数学圆锥曲线试题汇总3解答题_第3页
历年高考数学圆锥曲线试题汇总3解答题_第4页
历年高考数学圆锥曲线试题汇总3解答题_第5页
资源描述:

《历年高考数学圆锥曲线试题汇总3解答题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高考数学试题分类详解——圆锥曲线三、解答题1.(2009年广东卷●文●)(本小题满分14分)已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12.圆:的圆心为点.(1)求椭圆G的方程(2)求的面积(3)问是否存在圆包围椭圆G?请说明理由.【解析】(1)设椭圆G的方程为:()半焦距为c;则,解得,所求椭圆G的方程为:.(2)点的坐标为(3)若,由可知点(6,0)在圆外,若,由可知点(-6,0)在圆外;不论K为何值圆都不能包围椭圆G.2.(2009全国卷Ⅰ理)(本小题满分12分)(注意:在试题卷上作答无效)如图,已知抛物线与圆相交于、、

2、、-56-四个点。(I)求得取值范围;(II)当四边形的面积最大时,求对角线、的交点坐标分析:(I)这一问学生易下手。将抛物线与圆的方程联立,消去,整理得.............(*)抛物线与圆相交于、、、四个点的充要条件是:方程(*)有两个不相等的正根即可.易得.考生利用数形结合及函数和方程的思想来处理也可以.(II)考纲中明确提出不考查求两个圆锥曲线的交点的坐标。因此利用设而不求、整体代入的方法处理本小题是一个较好的切入点.设四个交点的坐标分别为、、、。则由(I)根据韦达定理有,则令,则下面求的最大值。方法一:利用三次均值求解。三次均值目前在两纲中虽不要求,但在处理一些最值

3、问题有时很方便。它的主要手段是配凑系数或常数,但要注意取等号的条件,这和二次均值类似。当且仅当,即时取最大值。经检验此时满足题意。方法二:利用求导处理,这是命题人的意图。具体解法略。下面来处理点的坐标。设点的坐标为:-56-由三点共线,则得。以下略。3.(2009浙江理)(本题满分15分)已知椭圆:的右顶点为,过的焦点且垂直长轴的弦长为.(I)求椭圆的方程;(II)设点在抛物线:上,在点处的切线与交于点.当线段的中点与的中点的横坐标相等时,求的最小值.解析:(I)由题意得所求的椭圆方程为,(II)不妨设则抛物线在点P处的切线斜率为,直线MN的方程为,将上式代入椭圆的方程中,得,即

4、,因为直线MN与椭圆有两个不同的交点,所以有,设线段MN的中点的横坐标是,则,设线段PA的中点的横坐标是,则,由题意得,即有,其中的或;当时有,因此不等式不成立;因此,当时代入方程得,将代入不等式成立,因此的最小值为1.4.(2009浙江●文●)(本题满分15分)已知抛物线:上一点到其焦点的距离为.(I)求与的值;(II)设抛物线上一点的横坐标为,过的直线交于另一点,交-56-轴于点,过点作的垂线交于另一点.若是的切线,求的最小值.解析(Ⅰ)由抛物线方程得其准线方程:,根据抛物线定义点到焦点的距离等于它到准线的距离,即,解得抛物线方程为:,将代入抛物线方程,解得(Ⅱ)由题意知,过

5、点的直线斜率存在且不为0,设其为。则,当则。联立方程,整理得:即:,解得或,而,直线斜率为,联立方程整理得:,即:,解得:,或,而抛物线在点N处切线斜率:MN是抛物线的切线,,整理得,解得(舍去),或,5.(2009北京●文●)(本小题共14分)-56-已知双曲线的离心率为,右准线方程为。(Ⅰ)求双曲线C的方程;(Ⅱ)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求m的值.【解析】本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.(Ⅰ)由题意,得,解得,∴,∴所求双曲线的方程为.(Ⅱ)设A、B

6、两点的坐标分别为,线段AB的中点为,由得(判别式),∴,∵点在圆上,∴,∴.6.(2009北京理)(本小题共14分)已知双曲线的离心率为,右准线方程为(Ⅰ)求双曲线的方程;(Ⅱ)设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值.【解法1】本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.-56-(Ⅰ)由题意,得,解得,∴,∴所求双曲线的方程为.(Ⅱ)点在圆上,圆在点处的切线方程为,化简得.由及得,∵切线与双曲线C交于不同的两点A、B,且,∴,且,设A、B两点的坐标分别为,则,∵,且,.∴的大小

7、为.-56-【解法2】(Ⅰ)同解法1.(Ⅱ)点在圆上,圆在点处的切线方程为,化简得.由及得①②∵切线与双曲线C交于不同的两点A、B,且,∴,设A、B两点的坐标分别为,则,∴,∴的大小为.(∵且,∴,从而当时,方程①和方程②的判别式均大于零).7.(2009江苏卷)(本题满分10分)在平面直角坐标系中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在轴上。(1)求抛物线C的标准方程;(2)求过点F,且与直线OA垂直的直线的方程;(3)设过点的直线交抛物线C于D、E两点,ME=2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。