函数与图像讲义

函数与图像讲义

ID:42416029

大小:724.18 KB

页数:15页

时间:2019-09-14

函数与图像讲义_第1页
函数与图像讲义_第2页
函数与图像讲义_第3页
函数与图像讲义_第4页
函数与图像讲义_第5页
资源描述:

《函数与图像讲义》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、龙文教育—您值得信赖的专业化、个性化辅导学校函数及其图像知识点:一、平面直角坐标系1、平面内有公共原点且互相垂直的两条数轴,构成平面直角坐标系。在平面直角坐标系内的点和有序实数对之间建立了—一对应的关系。2、不同位置点的坐标的特征:(1)各象限内点的坐标有如下特征:点P(x,y)在第一象限x>0,y>0;点P(x,y)在第二象限x<0,y>0;点P(x,y)在第三象限x<0,y<0;点P(x,y)在第四象限x>0,y<0。(2)坐标轴上的点有如下特征:点P(x,y)在x轴上y为0,x为任意实数。点P(x,y)在y轴上x为0,y为任意实数。3.点P(x,y)坐标

2、的几何意义:(1)点P(x,y)到x轴的距离是

3、y

4、;(2)点P(x,y)到y袖的距离是

5、x

6、;(3)点P(x,y)到原点的距离是4.关于坐标轴、原点对称的点的坐标的特征:(1)点P(a,b)关于x轴的对称点是;(2)点P(a,b)关于x轴的对称点是;(3)点P(a,b)关于原点的对称点是;二、函数的概念1、常量和变量:在某一变化过程中可以取不同数值的量叫做变量;保持数值不变的量叫做常量。2、函数:一般地,设在某一变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数。(1)自变量取值范围的确是:①解析式是只

7、含有一个自变量的整式的函数,自变量取值范围是全体实数。②解析式是只含有一个自变量的分式的函数,自变量取值范围是使分母不为0的实数。③解析式是只含有一个自变量的偶次根式的函数,自变量取值范围是使被开方数非负的实数。注意:在确定函数中自变量的取值范围时,如果遇到实际问题,还必须使实际问题有意义。(2)函数值:给自变量在取值范围内的一个值所求得的函数的对应值。(3)函数的表示方法:①解析法;②列表法;③图像法(4)由函数的解析式作函数的图像,一般步骤是:①列表;②描点;③连线三、几种特殊的函数1、一次函数15龙文教育—您值得信赖的专业化、个性化辅导学校直线位置与k,

8、b的关系:(1)k>0直线向上的方向与x轴的正方向所形成的夹角为锐角;(2)k<0直线向上的方向与x轴的正方向所形成的夹角为钝角;(3)b>0直线与y轴交点在x轴的上方;(4)b=0直线过原点;(5)b<0直线与y轴交点在x轴的下方;2、二次函数抛物线位置与a,b,c的关系:(1)a决定抛物线的开口方向(2)c决定抛物线与y轴交点的位置:c>0图像与y轴交点在x轴上方;c=0图像过原点;c<0图像与y轴交点在x轴下方;(3)a,b决定抛物线对称轴的位置:a,b同号,对称轴在y轴左侧;b=0,对称轴是y轴;a,b异号。对称轴在y轴右侧;3、反比例函数:15龙文教

9、育—您值得信赖的专业化、个性化辅导学校4、正比例函数与反比例函数的对照表:一次函数一次函数的概念:若两个变量x,y间的关系式可以表示为y=kx+b(k,b为常数,k≠0)的形式,则y是x的一次函数(x为自变量,y为因变量)特别地,当b=0时,称y是x的正比例函数。一次函数的图象及其性质:(1)、图象:一次函数的图象是一条直线,所以画图象时只要先确定两点,再过这两点画一条直线就可以画出一次函数的图象。(2)、性质:正比例函数一次函数表达式y=kx(k≠0)y=kx+b(k≠0)k>0k<0k>0k<0图象性质函数y的值随x的增大而增大.函数y的值随x的增大而减小

10、.15龙文教育—您值得信赖的专业化、个性化辅导学校1.图象是经过原点与第一、三象限的直线;2.函数y的值随x的增大而增大.1.图象是经过原点与第二、四象限的直线;2.函数y的值随x的增大而减小.一次函数的图象与k,b的关系如下图所示:y=kx+bk>0k<0b>0b<0题型一、点的坐标方法:x轴上的点纵坐标为0,y轴上的点横坐标为0;若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、若点A(m,n)在第二象限,则点(

11、m

12、

13、,-n)在第____象限;2、若点P(2a-1,2-3b)是第二象限的点,则a,b的范围为______________________;3、已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=_______,b=_________;若A,B关于y轴对称,则a=_______,b=__________;若若A,B关于原点对称,则a=_______,b=_________;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第______象限。题型二、关于点的距离的问题方法:点到x轴的距离用纵坐标的绝对值表示,点到y轴的

14、距离用横坐标的绝对值表示;15龙文教育

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。