欢迎来到天天文库
浏览记录
ID:42409858
大小:1.00 MB
页数:6页
时间:2019-09-14
《高中数学选修2-3:2.2.3独立重复实验与二项分布(2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题:第课时总序第个教案课型:新授课编写时时间:年月日执行时间:年月日教学目标:知识与技能:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。过程与方法:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。教学重点:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题教学难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算教学用具:多媒体、实物投影仪[来源:学科网]教学方法:承前启后
2、,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。教学过程:一、复习引入:1 独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是,那么在次独立重复试验中这个事件恰好发生次的概率.二、讲解范例:例5.某车间的5台机床在1小时内需要工人照管的概率都是,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件=“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验1小时内5
3、台机床中没有1台需要工人照管的概率,1小时内5台机床中恰有1台需要工人照管的概率,所以1小时内5台机床中至少2台需要工人照管的概率为答:1小时内5台机床中至少2台需要工人照管的概率约为.点评:“至多”,“至少”问题往往考虑逆向思维法例6.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击次[来源:学科网ZXXK]记事件=“射击一次,击中目标”,则.∵射击次相当于次独立重复试验,[来源:Zxxk.Com]∴事件至少发生1次
4、的概率为.由题意,令,∴,∴,∴至少取5.答:要使至少命中1次的概率不小于0.75,至少应射击5次例7.十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大?解:依题意,从低层到顶层停不少于3次,应包括停3次,停4次,停5次,……,直到停9次∴从低层到顶层停不少于3次的概率设从低层到顶层停次,则其概率为,∴当或时,最大,即最大,答:从低层到顶层停不少于3次的概率为,停4次或5次概率最大.例8.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局
5、、4局、5局才能取胜的概率.(2)按比赛规则甲获胜的概率.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为,乙获胜的概率为.记事件=“甲打完3局才能取胜”,记事件=“甲打完4局才能取胜”,记事件=“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜∴甲打完3局取胜的概率为.②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负∴甲打完4局才能取胜的概率为.③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负∴甲打完
6、5局才能取胜的概率为.(2)事件=“按比赛规则甲获胜”,则,又因为事件、、彼此互斥,故.答:按比赛规则甲获胜的概率为.例9.一批玉米种子,其发芽率是0.8.(1)问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于?(2)若每穴种3粒,求恰好两粒发芽的概率.()解:记事件=“种一粒种子,发芽”,则,,(1)设每穴至少种粒,才能保证每穴至少有一粒发芽的概率大于.∵每穴种粒相当于次独立重复试验,记事件=“每穴至少有一粒发芽”,则.∴.由题意,令,所以,两边取常用对数得,.即,∴,且,所以取.答:每穴至少种3粒,才能保证每
7、穴至少有一粒发芽的概率大于.(2)∵每穴种3粒相当于3次独立重复试验,∴每穴种3粒,恰好两粒发芽的概率为,答:每穴种3粒,恰好两粒发芽的概率为0.384三、课堂练习:1.每次试验的成功率为,重复进行10次试验,其中前7次都未成功后3次都成功的概率为()2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为()3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是()4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为,比赛时均能
8、正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为()5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为.(设每次命中的环数都是自然数)6.一名篮球运动员投篮命中率为,在一次决赛中投10个球,则投中的球数不少于9个的概率为.7.一射手对同一目标独立地进行4次射击,已知至少命中
此文档下载收益归作者所有