随机变量的收敛性

随机变量的收敛性

ID:42319807

大小:737.01 KB

页数:32页

时间:2019-09-12

随机变量的收敛性_第1页
随机变量的收敛性_第2页
随机变量的收敛性_第3页
随机变量的收敛性_第4页
随机变量的收敛性_第5页
资源描述:

《随机变量的收敛性》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第五章:随机变量的收敛性随机样本:IID样本,统计量:对随机样本的概括Y为随机变量,Y的分布称为统计量的采样分布如:样本均值、样本方差、样本中值…收敛性:当样本数量n趋向无穷大时,统计量的变化大样本理论、极限定理、渐近理论对统计推断很重要1收敛性主要讨论两种收敛性依概率收敛大数定律:样本均值依概率收敛于分布的期望依分布收敛中心极限定理:样本均值依分布收敛于正态分布2例1:依概率收敛概率的频率解释:随着观测次数n的增加,频率将会逐渐稳定到概率设在一次观测中事件A发生的概率为如果观测了n次,事件A发生了次,则当n充分大时,A在次观测中发生的频率逐渐

2、稳定到概率p。那么不对,若则对于,总存在,当时,有成立但若取,由于即无论N多大,在N以后,总可能存在n,使所以不可能在通常意义下收敛于p。3例2:依分布收敛考虑随机序列,其中直观:集中在0处,收敛到0但(Chebyshev不等式)4两种收敛的定义5.1定义:令为随机变量序列,X为另一随机变量,用Fn表示Xn的CDF,用F表示X的CDF1、如果对每个,当时,则Xn依概率收敛于X,记为。2、如果对所有F的连续点t,有则Xn依分布收敛于X,记为。同教材上5两种收敛的定义当极限分布为点分布时,表示为依概率收敛:依分布收敛:6其他收敛还有一种收敛:均方收

3、敛(L2收敛,convergetoXinquadraticmean)对证明概率收敛很有用当极限分布为点分布时,记为对应还有:L1收敛(convergetoXinL1)7依概率收敛随机变量序列,当对任意,则称随机变量序列几乎处处依概率收敛到X(convergealmostsurelytoX),记为:几乎处处收敛:比依概率收敛更强其他收敛或或8各种收敛之间的关系点分布,c为实数L1almostsurely(L2)反过来不成立!QuadraticmeanprobabilitydistributionPoint-massdistribution9例:伯

4、努利大数定律设在一次观测中事件A发生的概率为,如果观测了n次,事件A发生了次,则当n充分大时,A在次观测中发生的频率逐渐稳定到概率p。即对于,表示当n充分大时,事件发生的频率与其概率p存在较大偏差的可能性小。10例:5.3令直观:集中在0处,收敛到0依概率收敛:(Chebyshev不等式)11例:续依分布收敛:令F表示0处的点分布函数,Z表示标准正态分布的随机变量12收敛的性质13弱大数定律(WLLN)独立同分布(IID)的随机变量序列,方差,则样本均值依概率收敛于期望,即对任意称为的一致估计(一致性)在定理条件下,当样本数目n无限增加时,随机

5、样本均值将几乎变成一个常量对样本方差呢?依概率收敛于方差证明:根据Cheyshev不等式14样本方差依概率收敛于分布的方差15强大数定律(SLLN)独立同分布(IID)的随机变量序列,方差,则样本均值几乎处处收敛于期望,即对任意16例:大数定律考虑抛硬币的问题,其中正面向上的概率为p,令表示单次抛掷的输出(0或1)。因此若共抛掷n次,正面向上的比率为。根据大数定律,但这并不意味着在数值上等于p而是表示当n很大时,的分布紧围绕p令,若要求,则n至少为多少?解:17中心极限定理(CentralLimitTheorem,CLT)独立同分布(IID)的

6、随机变量序列,,则样本均值近似服从期望为方差为的正态分布,即其中Z为标准正态分布或也记为无论随机变量X为何种类型的分布,只要满足定理条件,其样本均值就近似服从正态分布。正态分布很重要但近似的程度与原分布有关大样本统计推理的理论基础18中心极限定理中心极限定理试验http://jyjs.gzhu.edu.cn:8080/skills/portal/resources/65995/67826/entryFile/swf/zhongxinjixian.htm19例:中心极限定理每个计算机程序的错误的数目为X,现有125个程序,用表示各个程序中的错误的

7、数目,求的近似值解:20中心极限定理的应用之一—二项概率的近似计算设是n重贝努里试验中事件A发生的次数,则,对任意,有当n很大时,直接计算很困难。这时如果不大(即p<0.1,np<5)或不大,则可用Poisson分布来近似计算21中心极限定理的应用之一—二项概率的近似计算(续)当p不太接近于0或1时,可根据CLT,用正态分布来近似计算根据CLT,德莫弗—拉普拉斯定理22中心极限定理的应用之一—二项概率的近似计算(续)例:已知红黄两种番茄杂交的第二代结红果的植株与结黄果的植株的比率为3:1,现种植杂交种400株,求结黄果植株介于83到117之间的

8、概率。由题意:任意一株杂交种或结红果或结黄果,只有两种可能性,且结黄果的概率种植杂交种400株,相当于做了400次贝努里试验,记为400株杂交种结黄果

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。