MNL模型在出行方式选择中的应用研究

MNL模型在出行方式选择中的应用研究

ID:42267920

大小:218.71 KB

页数:6页

时间:2019-09-09

MNL模型在出行方式选择中的应用研究_第1页
MNL模型在出行方式选择中的应用研究_第2页
MNL模型在出行方式选择中的应用研究_第3页
MNL模型在出行方式选择中的应用研究_第4页
MNL模型在出行方式选择中的应用研究_第5页
资源描述:

《MNL模型在出行方式选择中的应用研究》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、MNL模型在出行方式选择中的应用研究(西安建筑科技大学,沈乐尧,西安710055)摘要:本文采用MNL模型,利用渭南市居民出行od调查数据对模型进行标定,通过计算得出不同出行方式的选择与不同出行因子(年龄、职业、出行距离、出行速度)的相关关系,结果显示MNL模型有较高的精度。关键字:MNL模型;居民出行;交通方式中图分类号:C913.32文献标识码:A文章编号:出行者对于出行方式的选择不仅与交通方式的服务水平有关,还与出行者的个人属性及出行特性有关[1]。研究表明,非集计模型能较好考虑到这些因素,为交通预测提供更为容易描述交通

2、行为的解决办法[2]。MNL模型能通过效用函数确定项的计算就可以获得个体不同交通方式的选择概率,且较传统的集计模型在预测精度上有了显著提高。基于此,本文进行了实例研究。1.研究内容为了验证MNL模型在出行预测方面的有效性,本文选取了2011年渭南市的居民出行调查的抽样数据样本15459个,运用SPSS软件进行多项logit模型(multinationallogitmodel)分析。此次出行调查的15469例样本使用的是PT调查法按户口本编号分12个街区随机抽取1%个对象得到的样本。为了简化试验,本文中所进行的试验都是在选定的λ

3、=0.05的基础上进行的。数据经处理后运用SPSS19.0统计软件进行了MNL统计分析。2.变量的设置选择那些指标作为建模的变量,对模型的预测能力及可靠性都会产生较大的影响。为了全面客观的描述居民的出行选择,参考了其他文献的相关经验,应变量和自变量标定如表1、表2。表1应变量编码处理编码出行方式1步行2包括自行车、电动自行车、摩托车3公共交通,包括公交和出租车4小汽车,包括自驾、拼车以及单位车等本文以出行方式为应变量,运用多元logistic模型,通过SPSS软件,研究以下出行方式的选择与出行者特征之间的关系。应变量是居民出行

4、方式,在数据处理时将居民出行调查时的十余种出行方式处理为四大类如表1。受限于收集来的基础数据,最终选取自变量由2种特性变量组成如表2,其中人口特征变量为职业和,年龄两个变量;出行特征变量为出行距离和出行速度两个变量。由于应变量是多分类的名义变量,所以采用MNL模型进行回归分析。表2本例自变量服务私营离退职学生工人职员农民其他员个体休业12345678年小于20岁20-39岁40-59岁60岁及以上龄1234出10-100>100<1000m1000-4999m5000-9999m行距kmkm离12345出<5km/h5-19k

5、m/h20-39km/h>39km/h行速1234度3.模型的建立模型公式为:式(1)其中,自变量为Xi(i=1,2,…,k),αj与βj分别表示第j类的常数项与解释变量的参数。在SPSS中默认以最后一类(J)为基线,每个反应类别j与J基线类别间建立回归模型。参数βjk的估计值表示哎其他自变量固定不变的情况下,某一自变量Xk改变一个单位,反应类别j相对于类别J的对数优势平均改变量,即优势比。本例中,应变量y取值为1,2,3,4时,根据之前推倒过得公式,所以logistic回归模型是:式(2)式中:zin为出行者n选择方案i的效

6、用。为截距,X1,X2,X3,X4分别代表职业、出行距离、出行速度、年龄。再根据公式:,i=1,2,…,m;n=1,2,…,N-1式(3)Pin为出行者n选择i方案的概率。对于每个类别n,公式(5-18)的分母均相同,且等于每个类别n的预测概率Pin的分子之和。运用这个公式,就可以对应变量的发生概率进行预测。无论以哪一类别为基线,基线对应的参数均为0。由于Pin仅表示个体的交通行为,预测整体交通出行行为的方式的选择时,可以将模型的结果进行求和,并用平均值法进行模型集计。综上,出行方式的选择的概率为:式(4)本例中模型的参数值依

7、然在SPSS中选择估计采用最大似然法,用伪决定系数(PseudoR-Square)、似然比卡方检验和拟合优度检验来对回归模型的整体拟合质量进行检验。4.模型的处理结果案例处理摘要边际百分N比Y1707845.8%2183711.9%3457929.6%4196512.7%有效15459100.0%缺失0总计15459子总体337a由此可以看出统计样本中,4种出行方式的百分比分别为45.8%,11.9%,29.6%和12.7%。模型获得的似然比X2值为13906.632-6678.610=7228.023,自由度为12,P为0.

8、000说明模型中至少有1个自变量有统计学意义。伪决定系数是模型中自变量解释了自变量的变异占因变量总变异的百分比分别,它们分别是0.373和0.408均大0.01,说明模型比较理想。而本例中所建模型0.190,McFadden决定系数较高,模型与实际情况的拟合度较好。模型处理结

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。