资源描述:
《辽宁省抚顺市顺城区八年级数学下册17.1勾股定理勾股定理拼图及验证导学案无答案新版新人教版》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、勾股定理平图及验证活动2如图.剪4个全等的直角三角形,拼成如图的图形,利川面积证明上述关系。序号:98年级学科:数学执笔人:课题:勾股定理平图及验证时间:教学目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2•培养在实际生活中发现问题总结规律的意识和能力。3.培养学牛严谨的数学学习态度,体会勾股定理的应用价值。教学重点勾股定理的内容及证明。教学难点勾股定理的证明。教具:多媒体教学流程、课前展示•・1).画一个直角边为3cm和4cm的直角AABC,用刻度尺量出斜边的长。方法一:2).再画一个两直角边为5和1
2、2的直角AABC,用刻度尺量斜边的长。激趣导入方法二:方法三:探究新知通过测量•你能发现其中斜边与两直角边Z间冇怎样的数量关系吗?猜想3)观察图形你能得到什么结论?二、1.三个正方形面积之间的关系:2.直角三角•形ABC三边Z间的关系:3.文字表述:1cm/、1•如图(2)正方形P的面积二cm2正方形Q的面积二cm2正方形R的面积二cm22.正方形P、Q、R的面积之间的关系是:bC勾股定理的证明方法,达300余种。请学生利用业余时间探究。三、展示汇报:1.在RtAABC,ZC=90°⑴已知a=b=5,求Co⑵己知a二1,c二2,求b
3、。(3)已知Ic二17,b二&求a03.直角三角形ABC三边Z间的关系是:4.文字表述是:⑷已知a:b.=l:2,c=5,求a。⑸已知b二15,ZA=30°,求a,c。2.已知直角三角形的两边长分别为5和12,求笫三边。五、每堂一清:⑴在RtAABC,ZC=90°,沪8,b=15,贝Uc二。⑵在RtAABC,ZB二90°,a二3,b=4,则c=。⑶在RtAABC,ZC二90°,c二10,a:b=.3:4,则3二,b二。⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为(5)己知直角三角形的两边长分别为3cm和5cm,,则第三边
4、长为。⑹已知等边三角形的边长为2cm,则它的高为,面积为。作业:1.已知:如图,在AABC中,ZC=60°,AB=4V3,AC=4,AD是BC边上的高,求BC的长。四、实践创新:1.勾股定理的具体内容是:2.如图,直角AABC的主要性质是:ZC二90°,(用几何语言表示)⑴两锐角之J可的关系:;⑵若D为斜边中点,则斜•边中线;⑶若ZB=30°,则ZB的对边和斜边:.⑷三边之间的关系:3.AABC的三边a、b、c,若满足b=a+c2,则=90°;若满足b2>c2+a2,则ZB是角;若满足b25、利用面积法证明勾股定理。(参考教材30页)ab2.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的而积。