平面向量的概念及线性运算(I)

平面向量的概念及线性运算(I)

ID:42013978

大小:1.76 MB

页数:49页

时间:2019-09-06

平面向量的概念及线性运算(I)_第1页
平面向量的概念及线性运算(I)_第2页
平面向量的概念及线性运算(I)_第3页
平面向量的概念及线性运算(I)_第4页
平面向量的概念及线性运算(I)_第5页
资源描述:

《平面向量的概念及线性运算(I)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第26讲平面向量的概念及线性运算1.了解向量的实际背景,理解平面向量的概念,理解两个向量相等的含义,理解向量的几何表示.2.掌握向量加法、减法的运算,并理解其几何意义,掌握向量数乘的运算,理解两个向量共线的含义,了解向量线性运算的性质及其几何意义.3.了解平面向量的基本定理及其意义,掌握平面向量的正交分解及其坐标表示,会用坐标表示平面向量的加法、减法与数乘运算.理解用坐标表示的平面向量共线的条件.1.向量的有关概念既有①又有②的量叫做向量.③的向量叫做零向量,记作0,规定零向量的方向是任意的.④的向量叫做单位向量.方向⑤的⑥向量叫做平行向量(或共线向量).⑦且⑧的向量叫做相等向

2、量.⑨且⑩的向量叫做相反向量.大小方向长度为0长度为1相同或相反非零长度相等方向相同长度相等方向相反2.向量的表示方法用小写字母表示,用有向线段表示,用坐标表示.3.向量的运算加法、减法运算法则:平行四边形法则、三角形法则.实数与向量的积:实数λ与向量a的积是一个向量,记作λa,它的长度和方向规定如下:(1)

3、λa

4、=;(2)当λ>0时,λa的方向与a的方向;当λ<0时,λa的方向与a的方向;当λ=0时,λa=.运算律:交换律、分配律、结合律.4.平面向量共线定理向量b与非零向量a共线的充分必要条件是.11

5、λ

6、

7、a

8、12相同13相反14015有且只有一个实数λ,使得b=λa5

9、.平面向量基本定理如果e1、e2是同一平面内两个的向量,那么对这个平面内任一向量a,.实数λ1,λ2,使a=λ1e1+λ2e2.6.平面向量的坐标表示在平面直角坐标系内,分别取与x轴、y轴正方向相同的两个单位向量i、j作为基底,对任一向量a,x、y,使得a=xi+yj,则实数对叫做向量a的直角坐标,16不共线17有且只有一对18有且只有一对实数19(x,y)记作a=(x,y),其中x、y分别叫做a在x轴、y轴上的坐标,a=(x,y)叫做向量a的坐标表示.相等的向量坐标,坐标相同的向量是的向量.7.平面向量的坐标运算(1)若a=(x1,y1),b=(x2,y2),则a±b=.(2

10、)如果,则=.(3)若a=(x,y)则λa=.20相同21相等22(x1±x2,y1±y2)23A(x1,y1),B(x2,y2)24(x2-x1,y2-y1)25(λx,λy)128.平行与垂直的充要条件(1)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是.(2)若a=(x1,y1),b=(x2,y2),则a⊥b的充要条件是.9.向量的夹角两个非零向量a和b,作=a,=b,则___________________________叫做向量a与b的夹角,记作.如果夹角是,我们说a与b垂直,记作.2627x1y2-x2y1=0x1x2+y1y2=028∠AOB=θ(

11、0°≤θ≤180°)29〈a,b〉=θ3090°a⊥b31一平面向量的基本概念、线性运算及简单性质素材1二 平面向量的坐标表示素材2三平面向量共线问题素材3备选例题1.向量的坐标表示主要依据平面向量的基本定理,平面向量实数对(x,y),任何一个平面向量都有惟一的坐标表示,但是每一个坐标所表示的向量却不一定惟一.也就是说,向量的坐标表示和向量不是一一对应的关系,但和起点为原点的向量是一一对应的关系.即向量(x,y)OA点A(x,y).向量的坐标等于表示此向量的有向线段的终点坐标减去始点坐标.2.向量的坐标表示,实际上是向量的代数表示,在引入向量的坐标表示后,可以使向量运算完全代数

12、化,把关于向量的代数运算与数量的代数运算联系起来,从而把数与形紧密结合起来,这样很多几何问题,特别像共线、共点等较难问题的证明,就转化为熟知的数量运算,也为运用向量坐标运算的有关知识解决一些物理问题提供了一种有效方法.3.已知向量的始点和终点坐标求向量的坐标时一定要搞清方向,用对应的终点坐标减去始点坐标.本讲易忽略点有二:一是易将向量的终点坐标误认为是向量坐标;二是向量共线的坐标表示易与向量垂直的坐标表示混淆.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。