命题逻辑--propositional

命题逻辑--propositional

ID:41892736

大小:44.00 KB

页数:5页

时间:2019-09-04

命题逻辑--propositional_第1页
命题逻辑--propositional_第2页
命题逻辑--propositional_第3页
命题逻辑--propositional_第4页
命题逻辑--propositional_第5页
资源描述:

《命题逻辑--propositional》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、命题逻辑现代逻辑较简单、较基本的组成部分,它不考虑把命题分析成个体词、谓词和量词等非命题成分的组合,只研究由命题和命题联结词构成的复合命题、特别是研究命题联结词的逻辑性质和推理规律。命题逻辑分为经典命题逻辑和非经典命题逻辑,后者如构造逻辑、模态逻辑等逻辑系统中的命题逻辑部分。历史上最早研究命题逻辑的是古希腊斯多阿学派的哲学家。现代对命题逻辑的研究始于19世纪中叶的G.布尔。G.弗雷格则于1879年建立了第一个经典命题逻辑的演算系统。  语法和语义 研究命题逻辑需要使用公式表示复合命题的形式,并反映复合命题的逻辑特征,组成这种公式的一

2、组符号和规定怎样由符号构成公式的一组规则,合在一起便构成一个人工符号语言。当把符号和公式看作是没有意义的具体对象,只研究公式之间的关系时,这种研究称为语法的;当对符号和公式予以解释,例如把一部分符号解释为命题联结词,把某些符号解释成取真假二值为值的变元,并在这种解释下研究公式的意义时,便称这种研究为语义的。命题逻辑在描述和研究符号语言、即对象语言时,还要使用另一种语言,即元语言。元语言通常由某种自然语言并加上若干专门符号构成。关于整个命题逻辑系统的性质和系统特征的研究,称为元逻辑的研究。由元逻辑研究得到的关于整个逻辑系统的定理称为元

3、定理。  命题形式 用特定的语词把命题连接起来可以构成复合命题;从中起连接作用的语词称为命题联结词;构成复合命题的命题称为支命题,支命题本身也可以是复合命题。命题逻辑研究复合命题的逻辑形式、推理形式和公理系统。传统逻辑关于假言推理、选言推理和二难推理等的理论,都属于命题逻辑的范围。复合命题的形式可以公式明晰地表示。在经典命题逻辑里,这种公式通常由以下3种符号组成:①表示任意命题的命题变元,它们是p,q,r,p1,q1,...;②5个基本的命题联结词,即塡、∧、∨、→、凮;③用来显示公式的结构层次的括弧(,)。5个基本的命题联结词依次

4、称为否定词、合取词、析取词、蕴涵词和等值词;在汉语中,它们通常分别用语词"并非"、"并且"、"或者(可兼的)"、"如果...则"以及"当且仅当"表达,在这5个联结词中,否定词属一元联结词,其余4个都是连接两个命题以构成复合命题,称为二元联结词。复合命题的形式都可以用这3类符号构成的公式表示。如塡p表示否定命题的形式,p∧q、p∨q、p→q、p凮q,分别依次表示合取、析取、蕴涵和等值命题的形式。它们是和5个基本的联结词相应的5个基本的复合命题形式。  命题联结词的解释和真值函项 经典命题逻辑把命题看成或者真的或者假的,认为复合命题的真

5、假可唯一地由其支命题的真假决定。命题的真和假叫做命题的真值。命题变元是取真值(真或假)为值的变元,也就是以真值组成的集合为变域的变元。联结词是施于命题以形成命题的算子,特别是从命题的真值得出命题真值的算子。命题形式是一种真值函项,即以真值集为变元的定义域,并以真值集为值域的函项。这种真值函项可以用真值表定义。5个基本命题形式的真值表为:这个真值表规定了其中联结词的意义。其中的1代表真,0代表假。从表中可以看出这5个基本命题形式的值怎样由其中变元的值决定。例如,最左边的表表示,塡p的值由p的值决定,当p的值为1时,塡p的值为0;当p的

6、值为0时,塡p的值为1。这也就是对塡的解释。  联结词可以相互定义,例如,∨可用塡和→定义,即把p∨q定义为塡p→q。事实上,所有联结词都可以用某些基本联结词定义出来。例如,所有联结词都可以归结到塡和→,或者塡和∧,或者塡和∨。  常真式 常真式或称重言式是经典命题逻辑的一个公式,称为常真的。如果其中的命题变元不论赋予真值1或0,该公式的值常为1;如果对命题变元的每一组真值赋值一公式的值常为0,此公式便称为常假式或矛盾式。命题逻辑的公式可以分为常真的、常假的、以及对命题变元的某些组赋值取值1而对其它赋值取值0的公式3种类型。常真式表

7、达着命题逻辑的定律(规律),具有特殊的意义。  例如p∨塡p、p∧(p→q)→q,都是常真式。前者表示排中律,后者是表示肯定前件假言推理的推理形式的公式。一个公式是不是常真的,可以用真值表方法确定,即由依据5个基本命题形式的真值表所逐步构造出的真值表确定。下表可以说明怎样用真值表确定一个公式的真值,确定一个公式是否常真。表中最后一横行圈内的数码表示逐步求值的次序,纵列⑦是要确定其是否常真的公式的真值,因其全部是1,从而表明该公式常真,是一常真式。我们用元语言符号A、B等表示任一公式,用喺A表示A是一常真式。还用A喺B表示对于A和B中

8、出现的命题变元的每一组赋值,当A的值为1时,B的值必定也是1。喺与公理系统所用到的儱不同,前者是语义符号,而后者是语法方面的符号,它表示在系统中可以证明。按照常真式的定义,显然有:一公式A常真,当且仅当它的否定塡A常假。  公理系统 

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。