《绝对值》导学案

《绝对值》导学案

ID:41890470

大小:1.15 MB

页数:3页

时间:2019-09-04

《绝对值》导学案_第1页
《绝对值》导学案_第2页
《绝对值》导学案_第3页
资源描述:

《《绝对值》导学案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、1.2.2 绝对值教学目标1.理解、掌握绝对值的概念,体会绝对值的作用与意义.2.掌握求一个已知数的绝对值的方法.3.体验运用直观知识解决数学问题的过程,渗透数形结合思想和分类讨论的思想,并注意培养学生的思维能力.教学重难点绝对值定义的得出、意义的理解及求一个负数的绝对值.教学过程导入新课提问:1.同学们,你们的家在学校的哪边?2.从你的家到学校有没有一定的距离?3.你的家到学校的距离与家在学校的哪个方向有关系吗?教师结合学生的回答引出新课.(板书课题:绝对值)推进新课1.绝对值的几何意义问题1:请同学们在练习本上画一条数轴,并观察表示3的点与原点之

2、间有几个单位长度?教师对学生的回答,给予鼓励性评价后启发学生继续思考:哪一个数表示的点与原点也相距3个单位长度?教师正确评价学生的回答,若学生存在语言叙述不清之处,给予纠正后直接指出:+3和-3的绝对值相等,+5和-5的绝对值相等.自主探究:结合教师的叙述,猜一猜什么是绝对值?教师参与学生的讨论,鼓励学生大胆说出自己的见解,最后师生共同总结归纳出绝对值的概念及其表示方法.(板书:在数轴上,表示数a的点到原点的距离,叫做数a的绝对值,记作︱a︱)特别提醒:表示数0的点即原点,故︱0︱=0.问题2:(1)用数轴上的点表示下列各数:2,-4.5,,-,0;

3、(2)观察上述各点在数轴上的位置,写出这些数的绝对值.教学策略:教师首先参与学生的讨论,评价学生的方法,在学生练习时巡视指导,最后在展示台上展示个别学生的解答,借以讲评和纠正.2.绝对值的代数意义问题3:填表:数aa的相反数-aa的绝对值

4、a

5、2051000--100-205教学策略:通过让学生求出不同的数的绝对值,观察其结果,从而归纳出正数、负数和0的绝对值的情况,以表格的形式将绝对值、数本身及相反数进行比较,为归纳绝对值的特征做准备.学生独立完成后,再对所得的规律进行小组交流讨论.教师归纳总结:由绝对值的定义可知:(1)一个正数的绝对值是它本身;

6、(2)一个负数的绝对值是它的相反数;(3)0的绝对值是0.3.例题分析【例题】求下列各数的绝对值:-,+,-2.5,2.5.教学策略:学生独立完成,教师评价学生的答题情况即可.解:=;=;

7、-2.5

8、=2.5;

9、2.5

10、=2.5.自主探究:(1)-和+,-2.5和2.5是什么关系?(2)它们的绝对值是否相等?(3)由此得出什么规律?教师加入讨论,最后师生共同总结,教师板书.(板书:互为相反数的两个数的绝对值相等,反之绝对值相等、符号相反的两个数互为相反数)4.巩固训练(1)课本练习.(2)判断题:①有理数的绝对值一定是正数.(  )②绝对值最小的数是

11、0.(  )③如果两个数的绝对值相等,那么这两个数相等.(  )④如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大.(  )⑤绝对值等于它本身的数一定不是负数.(  )⑥绝对值等于1的数有两个.(  )本课小结谈谈本节课你的收获.教师简要点评:本节课从几何与代数两个方面,说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数,绝对值的代数意义可以作为求一个数的绝对值的方法.一、数轴的规范画法1.三要素:原点、正方向和单位长度.2.刻度要在直线上,且是细短线;数字在下,字母在上.数轴有原点、正方向和单位长度三个要素,缺一不可.这三个要素

12、都是规定的,也就是说,可以根据情况,灵活选定原点的位置、正方向的朝向、单位长度的大小(但要注意,一经选定,就不能再随意更改了).二、数轴上的点与有理数用数轴上的点表示有理数(正数在数轴原点的右边,负数在原点的左边,0用原点表示);任意一个有理数,都可以用数轴上的一个点表示.但是反过来,数轴上的任意一点,却并不一定表示一个有理数.因为数轴上除了表示有理数的点以外,还有表示无理数(以后会学到)的点.因此,不能说数轴上的任意一个点,都可以用有理数表示,也不能说有理数与数轴上的点一一对应.只要求学生知道“所有的有理数,都可以用数轴上的点表示”就可以了.三、“

13、相反意义的量”与“相反数”的区别认为相反意义的量是带“单位”的相反数是错误的.因为相反意义的量包含两层意思:一是它们意义相反,符号相反;二是它们都表示一定的数量(在数量上它们不一定相同).例如水库水位上升0.7米和下降0.4米就是两个具有相反意义的量.如果把上升0.7米记作+0.7米,那么下降0.4米就应记作-0.4米.而大小相等,符号相反的两个数是互为相反的数.例如-2和+2互为相反数.显然两个概念的区别不仅在于前者表示两个量,后者表示两个数,而且在于前者的绝对值可以不等,后者两个数的绝对值一定相等.四、求用字母表示的数的绝对值求一个数的绝对值,首

14、先判断这个数是正数、零还是负数,再根据“正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0”,去

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。