数学:171探索反比例函数的性质教案1(人教版八下)

数学:171探索反比例函数的性质教案1(人教版八下)

ID:41680333

大小:181.89 KB

页数:24页

时间:2019-08-29

数学:171探索反比例函数的性质教案1(人教版八下)_第1页
数学:171探索反比例函数的性质教案1(人教版八下)_第2页
数学:171探索反比例函数的性质教案1(人教版八下)_第3页
数学:171探索反比例函数的性质教案1(人教版八下)_第4页
数学:171探索反比例函数的性质教案1(人教版八下)_第5页
资源描述:

《数学:171探索反比例函数的性质教案1(人教版八下)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、课题:1.1反比例函数教学目标:1.理解反比例两数的概念,能判断两个变量之间的关系是否是两数关系,进而识别其屮的反比例函数.2.能根据实际问题中的条件确定反比例函数的关系式.3.能判断一个给定函数是否为反比例函数.通过探索现实生活小数量间的反比例关系,体会和认识反比例函数是刻画现实lit界屮特定数最关系的一种数学模型;进一步理解常最与变量的辩证关系和反映在函数概念中的运动变化观点.教学重点:反比例函数的概念教学难点:例1涉及较多的《科学》学科的知识,学生理解问题时有一定的难度。教学过程:一、创设情景

2、探究问题情境1:随着速度的变化,全程所用时间发生怎样的变化?当路程一定时,速度与时间成什么关系?(s=vt)当一个氏方形面积一定时,长与宽成什么关系?[说明]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个最的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。这一情境为后面学习反比例函数概念作铺垫。情境2:汽车从南京出发开往上海(全程约300km),全程所用时问t(h)随速度v(km/h)的变化而变化

3、.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成卜表:v/(km/h)608090100120t/h(3)速度v是时间t的函数吗?为什么?[说明](1)引导学生观察、讨论路程、速度、时间这三个最之间的关系,得出关系式s=vt,指导学生用这个关系式的变式来完成问题(1)•(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.3)结合函数的概念,特别强调唯一性,引导讨论问题(3).情境3:用函数关系式表示下列问题屮两个变最之间的关系:(1)一

4、个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;(3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(n?/h)的变化而变化;(4)实数m与n的积为一20(),m随n的变化而变化.问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)伤〈能归纳出反比例函数的概念吗?一般地,形如y=

5、£(k为常数,kHO)的函数称为反比例函数,其中x是自变量,y是x✓V的*1数,k是比例系数.反比例函数的自变量X的収值范围是不等于0的一切实数.[说明]这个情境先引导学生审题列出函数关系式,使Z与我们以前所学的一次函数、正比例函数的关系式进行类比,找岀不同点,进而发现特征为:(1)自变量X位于分母,且其次数是1.⑵常量kH0.(3)口变量x的取值范围是xHO的一切实数.(4)函数值y的取值范围是非零实数•并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭

6、示后强调反比例函数也可衣示为y=kxT(k为常数,kHO)的形式,并结合旧知验证其正确性.二、例题教学例1:下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?+2;(l)y=75;(2为=占;(3)y=—半;(4)y=;—3;(5)y=^^-;(6)y=

7、[说明]这个例题作了一些变动,引导学生充分讨论,把函数关系式如何化成丫=占或y=kx+b的形式了解函数关系式的变形,知道函数关系式屮比例系数的值连同前而的符号,会与一次函数的关系式进行比较,若对反比例函数的定义理解不深刻,常会认为(2)

8、与(4)也是反比例函数,而(2)式等号右边的分母是x-1,不是x,(2)式y与x—1成反比例,V-1—3x它不是y与x的反比例函数.对于(4),等号右边不能化成的形式,它只能转化为^―的形式,此时分了已不是常数,所以(4)不是反比例函数.而(7)屮右边分母为2x,看上1—21去和(2)类似,但它可以化成丁,即k=—,所以(7)是反比例函数.通过这个例题使学牛进一步认识反比例两数概念的本质,捉高辨别的能力.7O1例2:在函数y=:—1,y=—[•,y=x_l,y=£中,y是x的反比例函数的有个.[说明

9、]这个例题也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别72——x一・些反比例函数的变式,如y=kx1的形式.述有y=:—1通分为y=—厂,y、x都是变量,XX亠2分子不是常量,故不是反比例函数,但变为y+1=7可说成(y+1)与x成反比例.A例3:若y打x成反比例,且x=—3吋,y=7,则y与x的函数关系式为[说明]这个例题引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”來求比例系数,并引导学生归纳求反比例函数关系式

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。