资源描述:
《排列组合二项式》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.排列和组合的区别和联系:名称排列组合定义种数符号计算公式关系性质,从n个不同元素中取出m个元素,按一定的顺序排成一列从n个不同元素中取出m个元素,把它并成一组所有排列的的个数所有组合的个数解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.※解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略(三)、常用解题方法及适用题目类型⑴直接法:特殊元素法、特殊位置法(两者适用某
2、一个或几个元素在指定的位置或不在指定的位置)、捆绑法(两个或两个以上的元素必须相邻)、插空法(两个或两个以上的元素必须不相邻)隔板法(相同的元素分成若干部分,每部分至少一个)及分组问题.⑵间接法(排除法).优化190页(八)住店法188页解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客人”,能重复的元素看作“店”,再利用乘法原理直接求解。例9七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有()A.B.CD.分析:因同一学生可以同时夺得n项冠军,故学生可重复排列,将七名学生看作7家“店”,五项冠军看作5名“客人”,每个
3、“客人”有7种住宿法,由乘法原理得种。注:对此类问题,常有疑惑,为什么不是呢?用分步计数原理看,5是步骤数,自然是指数。练习:(1)把4个不同的小球放入3个分别标有1~3号的盒子中,允许有空盒子的放法有多少种?(2)将4封信全部投入3个邮筒,可以随意投,有多少种不同的投法?例6有4名男生,3名女生。3名女生高矮互不等,将7名学生排成一行,要求从左到右,女生从矮到高排列,有多少种排法?(五)189页-例2顺序固定问题用“除法”对于某几个元素顺序一定的排列问题,可先将这几个元素与其它元素一同进行排列,然后用总的排列数除以这几个元素的全排列数.所以共有种。分析:先在7个位置上作全排列,有种排法。
4、其中3个女生因要求“从矮到高”排,只有一种顺序故只对应一种排法,(六)分排问题用“直排法”把n个元素排成若干排的问题,若没有其他的特殊要求,可采用统一排成一排的方法来处理.例7七人坐两排座位,第一排坐3人,第二排坐4人,则有多少种不同的坐法?分析:7个人,可以在前后排随意就坐,再无其他限制条件,故两排可看作一排处理,所以不同的坐法有种.(1)三个男生,四个女生排成两排,前排三人、后排四人,有几种不同排法?或:七个人可以在前后两排随意就坐,再无其他条件,所以两排可看作一排来处理不同的坐法有种(2)八个人排成两排,有几种不同排法?练习6八.排列组合混合问题先选后排策略例8.有5个不同的小球,装
5、入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有__种方法.再把5个元素(包含一个复合元素)装入4个不同的盒内有_____种方法.根据分步计数原理装球的方法共有_____例2:3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少?解法一:首先,将3名医生分配到3所学校,每校1名,不同的分配方法有A33种;其次,将6名护士分配到3所学校,每校2名,不同的分配方法有C62·C42·C22种;由分步计数原理,共有A33·C62·C42·C22=540种“先选后排”法十.元素相同问题隔板策略例10.有10
6、个运动员名额,在分给7个班,每班至少一个,有多少种分配方案?解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有___________种分法。一班二班三班四班五班六班七班将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为例5:从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?分析:问题相当于把30个相同的球放入6个不同盒子(盒子不能空的)有几种放法?这类问题可用“隔板法”
7、处理.小结:把n个相同元素分成m份,每份至少1个元素,问有多少种不同分法的问题可以采用“隔板法”.共有:十四.构造模型策略例14.马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有________种一排10个座位,有7个座位有人座,每个座位上都有