资源描述:
《特征$ne 2$的有限域上对称矩阵》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、D40*D5J{66Vol.40,No.51997F9WACTAMATHEMATICASINICASept.,19973D=2>9@-%C$"2/+q!2w^;{L(s
kP47lv050091)BpFqsv=2T~zIxj}Fqom
2、daTikYQSA,BWKsFqoen2ν+δ[em2s+γTUOgqFqot]VPXAX=BTkTfXTXu[fXTXuTlyZrMn}qNa`uc_JRfuZr#UOgVPm
3、dhbqNa`uMR(1991)G4'05E15F5'O15TheNumberofSo
4、lutionstotheSymmetricMatrixEquationoveraFiniteFieldofCh.=2andRepresentationofItsq-hypergeometricSeriesWeiHongzengZhangYibin(HebeiNormalUniversity,Shijiazhuang050091,China)AbstractLetFqbeafinitefieldwithqelements,whereqisapowerofanoddprime.Inthispaper,usingsingularorthogonalgoemetryoverFq,we
5、havegiventhenumberofsolutionsXofrankkandsolutionsXtotheequationXAX=BoverF,qwhenAandBaresymmetricmatricesofordern,rank2ν+δandorderm,rank2s+γ,respectively.Finally,wehaveobtainedsimplerepresentationofenumerationalformulasusingq-hypergeometricseries.KeywordsSymmetricmatrixequation,Singularort
6、hogonalspace,q-hypergeometricseries1991MRSubjectClassification05E15ChineseLibraryClassificationO151=:gqrN~yp>Q?FqrqVK#TG-Fq>c=2.gA,BTrFqdnnm>G$&aFqdsrQ(XAX=B(1)t[_K1995-09-25,0Z_K1996-12-02,u_K1997-03-10h{[,7~xs(Bs
j,:(B784z5540*>m×n&aX>ynmk>m×n&aX>yTnm×n(A,B)nnm×n(A,B
7、;k),`2(1)nXjX>ulL.Carlitz[2]Ijyn>QM9"7K.->-Q->qy>Q((1)>X>yv0J.H.HodgesZ[3]nO^+Q((1)>mk>X>y9r>L![3]nr=ao(3.3);(3.4)K1n&apWyJPjynS+>ao!!c@
^Z[6]n3IK#o>y.1<<7K.->-Q->q^+7nm×n(A,B)>@ao4
>`Z$f[3]>1j(n3IK#NFf.>y.1<^+nm×n(A,B;k)>@ao_(`ao>E/nm×n(A,B)ZD>]
8、iC<.oq@^+>Vm;wSIUz"[1].PnI>zA*aoIq"oy/7x22?HgFqrc=2>K#TUzrFq>@eESIQVFqd5&aA,B(n)$r>`i0ZFqdSNF&aTnTAT=B.+FqqFqdn/)6.(n)G$&aA$Em>`iG]ox∈Fq,/xAx=0+x=0.J[1]hFqdEm&a>y≤2.L.E.Dicksong@7Fqd]onG$&aAPw>}oS2ν+δ,∆(n)w.Sn,2ν+δ,∆=O(n−2ν−δ)i@Q@`2Oqn9&a
9、S2ν+δ,∆@qC}SNFG$&a>w.OI(ν)OI(ν)S2ν=(ν),S2ν+1,1=I(ν)O,IO1OI(ν)OI(ν)I(ν)OS=I(ν)O,S=,2ν+1,z2ν+21z−z(ν)LnIjν8&aG-δ=0,1
10、2Q∅,:δ=0m,1∆=
11、z,:δ=1m,(2)1,:δ=2m,−zνQ∆T$S2ν+δ,∆,Sn,2γ+δ,∆>jynEmTZ`mA>mr2ν+δ,>ν,∆>$A>jynEmTFqd;KmG$&a