欢迎来到天天文库
浏览记录
ID:41262211
大小:127.00 KB
页数:16页
时间:2019-08-20
《13.3.2等边三角形的判定》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、13.3.2等边三角形的判定王章军2013.11一、复习什么叫做等边三角形?它有什么性质?二、新知探究什么样的三角形会是等边三角形?1.三条边都相等的三角形是等边三角形。2.猜想:三个角都相等的三角形是等边三角形。你能证明这个猜想吗?证明:三个角都相等的三角形是等边三角形。已知:如图,△ABC中,∠A=∠B=∠C。求证:AB=BC=CA。证明:∵∠A=∠B,∴BC=AC(等角对等边)∵∠B=∠C∴AC=AB∴AB=BC=ACABC定理:三个角都相等的三角形是等边三角形。思考:如果一个三角形有两个角等于60°,那么这个三角形是等边三角形
2、吗?定理:有两个角等于60度的三角形是等边三角形。练习:如图,△ABC,(1)如果AB=AC,∠A=60°,△ABC是等边三角形吗?(2)如果AB=AC,∠B=60°,△ABC是等边三角形吗?(3)如果AB=AC,∠C=60°,△ABC是等边三角形吗?你能用一句话概括上面得到的结论吗?定理:有一个角等于60度的等腰三角形是等边三角形。ABC概括:等边三角形的判定:1.三边都相等的三角形是等边三角形;2.三个角都相等的三角形是等边三角形;3.有两个角等于60度的三角形是等边三角形。4.有一个角等于60度的等腰三角形是等边三角形。三、例解
3、应用例1:如图,点B是线段AC上一点,分别以AB,BC为边在线段AC的同侧作等边三角形ABD和等边三角形BCE,求证:△BMN是等边三角形。证明:在等边△ABD和等边△BCE中,AB=DB,BE=BC∠ABD=∠CBE=60°∴∠MBN=60°,∠ABE=∠DBC=120°AB=DB在△ABE和△DBC中,∠ABE=∠DBCBE=BC∴△ABE≌△DBC∴∠BAE=∠BDC在△ABM和△DBN中,∠BAE=∠BDCAB=DB∠ABM=∠DBN=60°∴△ABM≌△DBN∴BM=BN∵∠MBN=60°∴△BMN是等边三角形。例2:如图,
4、△ABC中,D、E是BC上的点,且BD=DE=EC=AD=AE,求∠BAC的度数。请同学们自学P82,83例3,例4,例5四、练习1.如图,把等腰直角△ABC沿BD折叠,使点A落在边BC上的点E处.下面结论错误的是( )A.AB=BEB.AD=DCC.AD=DED.AD=ECB2.若△ABC的三边长为a,b,c,且满足a2=b2+c2-bc,b2=c2+a2-ca,c2=a2+b2-ab,则△ABC是()A.钝角三角形B.直角三角形C.等腰直角三角形D.等边三角形D3.如图,点D是等边△ABC的边BC上一点,∠ADE=60°,则∠B
5、AD与∠CDE的大小关系是()∠BAD>∠CDE∠BAD=∠CDE∠BAD<∠CDE无法确定B4.如图,△ABC中,AB=AC,D、E在BC、AC上,且AD=AE,∠1=40°,则∠2=_______°.20此题的一般结论:∠1=2∠2五、作业P85,习题13.37,8
此文档下载收益归作者所有