九年级数学下册 第二章 二次函数 2.5 二次函数与一元二次方程 第1课时 二次函数与一元二次方程教案1 北师大版

九年级数学下册 第二章 二次函数 2.5 二次函数与一元二次方程 第1课时 二次函数与一元二次方程教案1 北师大版

ID:41218301

大小:804.50 KB

页数:3页

时间:2019-08-19

九年级数学下册 第二章 二次函数 2.5 二次函数与一元二次方程 第1课时 二次函数与一元二次方程教案1 北师大版_第1页
九年级数学下册 第二章 二次函数 2.5 二次函数与一元二次方程 第1课时 二次函数与一元二次方程教案1 北师大版_第2页
九年级数学下册 第二章 二次函数 2.5 二次函数与一元二次方程 第1课时 二次函数与一元二次方程教案1 北师大版_第3页
资源描述:

《九年级数学下册 第二章 二次函数 2.5 二次函数与一元二次方程 第1课时 二次函数与一元二次方程教案1 北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.5二次函数与一元二次方程第1课时二次函数与一元二次方程1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系;(重点)2.理解二次函数与x轴交点的个数与一元二次方程的根的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根;(重点)3.通过观察二次函数与x轴交点的个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.(难点)                   一、情境导入一个涵洞成抛物线形,它的截面如图所示.现测得,当水面宽AB=1.6m时,涵洞顶点与水面的距离OC=2.4m.当水位上升一定高度到达点F时,这时,离水面距离CF=1.

2、5m,则涵洞宽ED是多少?是否会超过1m?根据已知条件,要求ED宽,只要求出FD的长度.在如图所示的直角坐标系中,只要求出点D的横坐标即可.由已知条件可得到点D的纵坐标,又因为点D在涵洞所成的抛物线上,所以利用抛物线的函数关系式可以进一步算出点D的横坐标.你会求吗?二、合作探究探究点一:二次函数与一元二次方程【类型一】求抛物线与x轴的交点坐标已知二次函数y=2x2-4x-6,它的图象与x轴交点的坐标是________________.解析:y=2x2-4x-6=2(x2-2x-3)=2(x-3)(x+1),设2(x-3)(x+1)=0,解得x1=3,x2=-1,∴它的图象与

3、x轴交点的坐标是(3,0),(-1,0).故答案为(3,0),(-1,0).方法总结:抛物线与x轴的交点的横坐标,就是二次函数为0时,一元二次方程的解.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】判断抛物线与x轴交点的个数已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).(1)求证:此抛物线与x轴总有两个交点;(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值.解析:(1)只需证明Δ=(m+2)2-4m×2≥0即可;(2)利用因式分解法求得抛物线与x轴交点的横坐标,然后根据x的值来求正整数m的值.(1)证明:∵m≠0,∴

4、Δ=(m+2)2-4m×2=m2+4m+4-8m=(m-2)2.∵(m-2)2≥0,∴Δ≥0,∴此抛物线与x轴总有两个交点;(2)解:令y=0,则(x-1)(mx-2)=0,所以x-1=0或mx-2=0,解得x1=1,x2=.当m为正整数1或2时,x2为整数,即抛物线与x轴总有两个交点,且它们的横坐标都是整数.所以正整数m的值为1或2.方法总结:解答本题的关键是明确当根的判别式Δ≥0抛物线与x轴有两个交点.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型三】已知抛物线与x轴的交点个数,求字母系数的取值范围已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求

5、k的取值范围.解析:应分k-3=0和k-3≠0两种情况进行讨论,(1)当k-3=0即k=3时,此函数是一次函数;(2)当k-3≠0,即k≠3时,此函数是二次函数,根据函数图象与x轴有交点可知Δ=b2-4ac≥0,求出k的取值范围即可.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0.∴k≤4且k≠3.综上所述,k的取值范围是k≤4

6、.方法总结:由于k的取值范围不能确定,所以解决本题的关键是要注意分类讨论,不要漏解.变式训练:见《学练优》本课时练习“课后巩固提升”第5题【类型四】二次函数与一元二次方程的判别式、根与系数的关系的综合已知:抛物线y=x2+ax+a-2.(1)求证:不论a取何值时,抛物线y=x2+ax+a-2与x轴都有两个不同的交点;(2)设这个二次函数的图象与x轴相交于A(x1,0),B(x2,0),且x1、x2的平方和为3,求a的值.解析:(1)利用关于x的一元二次方程x2+ax+a-2=0的根的判别式的符号进行证明;(2)利用根与系数的关系写出x1、x2的平方和是x+x=(x1+x2)

7、2-2x1x2=a2-2a+4=3,由此可以求得a的值.(1)证明:∵Δ=a2-4(a-2)=(a-2)2+4>0,∴不论a取何值时,抛物线y=x2+ax+a-2与x轴都有两个不同的交点;(2)解:∵x1+x2=-a,x1·x2=a-2,∴x+x=(x1+x2)2-2x1·x2=a2-2a+4=3,∴a=1.方法总结:判断一元二次方程与x轴的交点,只要看根的判别式的符号即可,而要判断一元二次方程根的情况,要利用根与系数关系.变式训练:见《学练优》本课时练习“课后巩固提升”第6题探究点二:利用二次函数解决运动中的抛物

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。