欢迎来到天天文库
浏览记录
ID:41190208
大小:65.50 KB
页数:5页
时间:2019-08-18
《高效学习案例(刘治英)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高效学习案例---从数线段说起重庆市涪陵区第十六中学校刘治英内容摘要:运用知识迁移,脱离题海、脱离苦海,提高学习效率,提高学习兴趣关键词:数线段化归思想触类旁通“以学生为主体,以教师为主导,以练习为主线。”这是当代教育家钱梦龙先生提出的课堂教学的指导思想。但是在教学实践中,往往把“以练习为主线”,当作题海战术,就是大量地做练习题。把过去的满堂讲,变为现在的满堂练。也有人认为数学的教学就是习题的教学,学好数学的方法就是题海战术。其实,非也!所谓:“授之以鱼,不如授之以渔。”如果我们在教学中有意识的梳理知识,有效运用迁移规律对已有知
2、识、技能、概念进行正迁移,培养学生举一反三、触类旁通的学习能力和探索发现能力,我们就能脱离题海,脱离苦海。变苦学为乐学,提高学习效率,增强自信,体验学习数学的无穷乐趣。下面我将以巧数线段为例,利用数学的化归思想,让学生体验举一反三、触类旁通的乐趣,增强学习数学的兴趣。一:怎样巧数线段例1:数一数图中有几条线段.方法一:可以抓住端点来数.左端点是A的,有线段AB、AC、AD、AE共4条;左端点是B的,有线段BC、BD、BE共3条;左端点是C的,有线段CD、CE共2条;左端点是D的,有线段DE共1条.合在一起,图中有4+3+2+1=
3、10条线段.方法二:也可以抓住段数来数.单独一段形成的,有线段AB、BC、CD、DE共4条;两段合在一起形成的,有线段AC、BD、CE共3条;三段合在一起形成的,有线段AD、BE共2条;四段合在一起形成的,有线段AE共1条.合在一起,图中有4+3+2+1=10条线段. 以上排列有序的连加算式,似乎可以让大家联想出更一般情形的计数方法.如果一条较长的线段上有n个点,那么就被划分成(n-1)条小段(n为不小于2的自然数)那么,从这条较长的线段中共可以数出多少条线段呢?线段的总条数就是(n-1)+…+3+2+1=n(n-1)/2这样数
4、线段是不是更科学更方便呢?练习:在一条线段中间共刻有2000个不重合的点,请问,从这条线段中共可以数出多少条线段来?二:数线段问题的方法运用经过对数线段问题的细致研究、变异、拓广,可导出许多新的命题,只要我们能洞察数学问题的本质,抓住事物间的连接点,有效运用迁移规律就能收到举一反三、触类旁通的效果,对培养学生良好的思维方法有重要作用,可谓其乐无穷也。【问题一】 数一数,图中共有多少个角?分析:我们知道有公共端点两条射线组成一个角,通过观察可知,图中有6条射线,图中包含的所有角都具有O点这一共同端点。如果我们按照一定的顺序数,就会
5、发现:按逆时针方向看,以射线OA为角的始边的角有5个;以射线OB为角的始边的角有4个;以射线OC为角的始边的角有3个;以射线OD为角的始边的角有2个;以射线OE为角的始边的角有 1个。角的总数:5+4+3+2+1=(6×5)/2=15(个)也可这样理解:可把有公共端点的六条射线看成在同一条直线上的六个点,六条射线组成角的个数就是六个端点组成线段的条数,角的总数即为(6×5)/2=15(个)【问题二】数三角形:如图,点P与直线l上的 A、B、C、D四个点一共可以构成几个三角形?分析:我们可以用类似的方法来想:因为△PAB、△PBC
6、、…,它们均以点P为公共点,所以三角形的个数取决于直线l上线段的条数,而直线l上共有(4×3)/2=6条线段,故共有6个三角形PABCDl【问题三】.你能从下图中数出多少个长方形来分析: 这个图形的特点:就是其中每一个长方形的宽都相等(等于AB或CD),因此,以AB为宽的每一个长方形的长都是BC上的一条对应线段,这样,以AB为宽的长方形的个数,取决于BC上的线段的条数,由于BC上的线段的条数为:3+2+1=(4×3)/2=6(条),所以这个图形中的长方形的个数是6个.中考链接:(2011年重庆中考)下列图形都是由同样大小的平行四
7、边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……则第⑥个图形中平行四边形的个数为()A55B42C41D29ABCD【问题四】列车票:如图,在火车站A到火车站B的铁路之间还有C、D两个火车站,①问从A地到B地有多少种列车票价?②问从A地到B地需要定制几种列车票分析:我们知道,票价只与列车行驶的路程有关,而与列车行驶的方向无关.把铁路看成是直线,数一数点A与点B之间一共有几条线段即可[共有(4×3)/2=6条线段],故有6种票价.又因为列车票不
8、仅与票价有关,而且与列车行驶的方向也有关.如“重庆→北京”与“北京→重庆”就是两种不同的乘车方向,它们的票价一般情况下是相同的,但列车票的形式不同,需准备两种车票.即把线段AB和BA看作是两条线段,故共需定制3×4=12(种)列车票.中考链接:(2008自贡市)
此文档下载收益归作者所有