资源描述:
《高等数学之多元函数微分学(I)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第八章一、多元函数的极值二、多元函数的最大值与最小值三、条件极值机动目录上页下页返回结束第六节多元函数的极值一、多元函数的极值定义:若函数则称函数在该点取得极大值(极小值).例如:在点(0,0)有极小值;在点(0,0)有极大值;极大值和极小值统称为极值,使函数取得极值的点称为极值点.在点(0,0)无极值.的某邻域内有机动目录上页下页返回结束说明:使偏导数都为0的点称为驻点.例如,定理1(必要条件)函数一阶偏导数,但驻点不一定是极值点.有驻点(0,0),但在该点不取极值.且在该点取得极值,则有存在机动目录
2、上页下页返回结束时,具有极值定理2(充分条件)的某邻域内具有一阶和二阶连续偏导数,且令则:1)当A<0时取极大值;A>0时取极小值.2)当3)当时,没有极值.时,不能确定,需另行讨论.若函数机动目录上页下页返回结束据此定理可得到求函数的极值的步骤:(P97)例1.求函数解:第一步求驻点.得驻点:(1,0),(1,2),(–3,0),(–3,2).第二步判别.在点(1,0)处为极小值;解方程组的极值.求二阶偏导数机动目录上页下页返回结束在点(3,0)处不是极值;在点(3,2)处为极大值.在点(1,2)
3、处不是极值;机动目录上页下页返回结束例2.讨论函数及是否取得极值.解:显然(0,0)都是它们的驻点,在(0,0)点邻域内的取值,因此z(0,0)不是极值.因此为极小值.正负0在点(0,0)并且在(0,0)都有可能为机动目录上页下页返回结束二、多元函数的最大值与最小值函数f在闭域上连续函数f在闭域上可达到最值可能最值点驻点边界上的最值点特别,当区域内部最值存在,且只有一个极值点P时,为极小值为最小值(大)(大)依据机动目录上页下页返回结束例3.有一宽为24cm的长方形铁板,把它折起来做成解:设折起来的边长
4、为xcm,则断面面积x24一个断面为等腰梯形的水槽,倾角为,积最大.为问怎样折法才能使断面面机动目录上页下页返回结束令解得:由题意知,最大值在定义域D内达到,而在域D内只有一个驻点,故此点即为所求.机动目录上页下页返回结束三、条件极值极值问题无条件极值:条件极值:条件极值的求法:方法1代入法.求一元函数的无条件极值问题对自变量只有定义域限制对自变量除定义域限制外,还有其它条件限制例如,转化机动目录上页下页返回结束引入辅助函数辅助函数F称为拉格朗日(Lagrange)函数.利用拉格则极值点满足:朗日函数
5、求极值的方法称为拉格朗日乘数法.机动目录上页下页返回结束拉格朗日乘数法的具体求解步骤:见P100方法2拉格朗日乘数法.例如,推广拉格朗日乘数法可推广到多个自变量和多个约束条件的情形.设解方程组得到可能的极值点.例如,求函数下的极值.在条件机动目录上页下页返回结束例4.要设计一个容量为则问题为求x,y,令解方程组解:设x,y,z分别表示长、宽、高,下水箱表面积最小.z使在条件水箱长、宽、高等于多少时所用材料最省?的长方体开口水箱,试问机动目录上页下页返回结束得唯一驻点由题意可知合理的设计是存在的,长、宽为
6、高的2倍时,所用材料最省.因此,当高为机动目录上页下页返回结束思考:当水箱封闭时,长、宽、高的尺寸如何?提示:利用对称性可知,(见P98例5)内容小结1.函数的极值问题第一步利用必要条件在定义域内找驻点.即解方程组第二步利用充分条件判别驻点是否为极值点.2.函数的条件极值问题(1)简单问题用代入法如对二元函数(2)一般问题用拉格朗日乘数法机动目录上页下页返回结束设拉格朗日函数如求二元函数下的极值,解方程组第二步判别•比较驻点及边界点上函数值的大小•根据问题的实际意义确定最值第一步找目标函数,确定定义域(
7、及约束条件)3.函数的最值问题在条件求驻点.机动目录上页下页返回结束作业P101:2;4.习题课目录上页下页返回结束