第六章实数教案

第六章实数教案

ID:41056051

大小:1.02 MB

页数:35页

时间:2019-08-15

第六章实数教案_第1页
第六章实数教案_第2页
第六章实数教案_第3页
第六章实数教案_第4页
第六章实数教案_第5页
资源描述:

《第六章实数教案》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、武威第十九中学2014—2015学年度第二学期七年级数学学科第六章单元(章)教材分析1、地位与作用:本章<实数>是人教版八年级数学上册第三十章内容。学习算术平方根,平方根,立方根之后,为学习实数打下基础;由于实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,完成了初中阶段数的扩展。运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。因此,本章是今后学习根式运算、方程、函数等知识的重要基础。2、目标与要求:知识与技能通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;

2、会用计算器求算术平方根;使学生理解平方根的概念,了解平方与开平方的关系。学会平方根的表示法和求非负数的平方根;进一步认识实数和数轴上的点一一对应蕴含着数形结合的思想,通过学习不仅是完善了学生的知识结构,而且让学生领会到数形结合的思想,培养了学生的分类意识,使学生养成用多角度思维的思考习惯过程与方法通过了解平方与开平方的关系,培养学生逆向思维能力;能对具体情景中的数学信息作出合理的解释和推断、解决问题,能由实际问题抽象成数学问题,让学生讨论、类比提出自己的见解,并在探索的同时较好的获得新知;经历在具体例子中抽象出

3、概念的过程,培养学习的主动性,提高数学运算能力。情感态度与价值观通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。3、重点与难点:重点:算术平方根、平方根、立方根的概念和运算;实数的认识。难点:算术平方根与平方根联系与区别;有理数与无理数的区别。4、教法与学法:教师启发引导,学生自主探究,分类比较法,统一归纳法,自学讨论法,小组互动法等教学方法.5、活动步骤:第35页(第五单元)一、创设导入;二、探索归纳;三、应用

4、;四、练习;五、课堂总结;六、布置作业;6、时间安排:6.1平方根3课时6.2立方根1课时6.3实数2课时复习与小结2课时第35页(第五单元)武威第十九中学2014—2015学年度第二学期集体备课教学设计七年级数学学科下册第六单元(章)单元(章)名称、课题6.1.1平方根课时划分1教学课时1总备课数1主备人张忠国备课组其他成员吴金元高吉忠胡秀年王秀存集体备课内容二次备课内容三维教学目标知识与能力:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出

5、算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。情感、态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。教学重点算术平方根的概念和求法。教学难点算术平方根的求法。教法自主探究、启发引导、学法小组合作、练习法,自查互纠教学准备三块大小相等的正方形纸片;学生计算器。教学过程一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多

6、少?二、探索归纳:1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为。第35页(第五单元)接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。上面的问题,实际上是已知一个正数的平方,求这个正数的问题。2.归纳:⑴算术平方根的概念:一般地,如果一个正数x的平方等于

7、a,即x2=a那么这个正数x叫做a的算术平方根。⑵算术平方根的表示方法:a的算术平方根记为,读作“根号a”或“二次很号a”,a叫做被开方数。三、应用:例1、求下列各数的算术平方根:⑴⑵⑶⑷⑸注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算;②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;③0的算术平方根是0。由此例题教师可以引导学生思考如下问题:你能求出-1,-36,-100的算术平方根吗?任意一个负数有算术平方根吗?归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有

8、算术平方根。即:只有非负数有算术平方根,如果第35页(第五单元)有意义,那么。注:且这一点对于初学者不太容易理解,教师不要强求,可以在以后的教学中慢慢渗透。例2、求下列各式的值:(1)(2)(3)(4)分析:此题本质还是求几个非负数的算术平方根。例3、求下列各数的算术平方根:⑴⑵⑶⑷根据学生的学习能力和理解能力可进行如下总结:1、由,,可得2、由,,可得教师需强调时对两种情况都成立。四

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。