欢迎来到天天文库
浏览记录
ID:41055686
大小:133.00 KB
页数:5页
时间:2019-08-15
《高一数学教学设计与反思》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高一数学教学设计与反思----函数图象及其应用一、教学内容及内容解析:本节课安排在人教版必修1第二章结束之后,第三章教学之前,对所学常见函数模型及其图像进行归纳总结,使学生对函数图像有个系统的认识,在此基础上,一方面加强学生的看图识图能力,探究函数模型的广泛应用,另一方面,着重探讨函数图像与方程的联系,渗透函数与方程的思想及数形结合思想,为第三章作了很好的铺垫,承上启下,衔接自然,水到渠成。为使学生对函数与方程的关系有一个逐步认识的过程,应遵循由浅入深、循序渐进的原则.从学生认为较简单的问题入手,由具体到一般,
2、建立方程的根与函数图像的联系。另外,函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”,用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。二、学情分析学生在学完了第一章《集合与函数概念》、第二章《基本初等函数》后,对函数的性质和基本初等函数及其图像有了一定的了解和把握,但学生素质参差不齐,又存在能力差异,导致不同学生对知识的领悟与掌握能力的差距很大。因此进行本堂课的教学,应首先有意识地让
3、学生归纳总结旧知识,提高综合能力,对新知识的传授,即如何利用函数图像解决方程的根的问题,则应给足学生思考的空间和时间,充分化解学生的认知冲突,化难为易,化繁为简,突破难点。高中数学与初中数学相比,数学语言在抽象程度上突变,思维方法向理性层次跃迁,知识内容的整体数量剧增,以上这三点在函数这一章中得到了充分的体现,本章的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。因此,在教学中应多考虑初高中的衔接,更好地帮助学生借由形象的手段理解抽象的概念,在函数这一章,函数的图像就显得尤其重要而且直观。三、设计
4、思路1.尽管我们的教材为学生提供了精心选择的课程资源,但教材仅是教师在教学设计时所思考的依据,在具体实施中,我们需要根据自己学生数学学习的特点,联系学生的学习实际,对教材内容进行灵活处理,比如调整教学进度、整合教学内容等,本节课是必修1第二章与第三章的过渡课,既巩固了第二章所学知识,又为第三章学习埋下伏笔,对教材做了一次成功的加工整合,正所谓磨刀不误砍材功。2.树立以学生为主体的意识,实现有效教学。现代教学论认为,学生的数学学习过程是一个学生已有的知识和经验为基础的主动建构的过程,只有学生主动参与到学习活动中,
5、才是有效的教学。在本节课的设计中,首先设计一些能够启发学生思维的活动,学生通过观察、试验、思考、表述,体现学生的自主性和活动性;其次,设计一些问题情境,而解决问题所需要的信息均来自学生的真实水平,要么定位在学生已有的知识基础,要么定位在一些学生很容易掌握的知识上,保证课堂上大部分学生都能够轻松地解决问题。随着学生的知识和信息不断丰富,可以向学生介绍更多类型的问题情境或更难的应用问题情境,渗透数学思想,使学生学会问题解决的一般规律。3.凡事预则立,不预则废。预设是数学课堂教学的基本要求,但课堂教学不能过分拘泥于预
6、设的固定不变的程序,应当开放地纳入弹性灵活的成分以及始料不及的体验。一堂好数学课应该是一节不完全预设的课,在课堂中有教师和学生真实的情感、智慧的交流,这个过程既有资源的生成,又有过程状态的生成,内容丰富,多方互动,给人以启发。四、教学目标分析1.通过复习所学函数模型及其图像特征,使学生对函数有一个较直观的把握和较形象的理解,缓解因函数语言的抽象性引起的学生的心理不适应及不自觉的排斥情绪。2.通过练习的设置,从解决简单实际问题的过程中,让学生体会函数模型的广泛适用性,贯穿理论联系实际、学以致用的观点,充分体现数学
7、的应用价值,加强学生的看图识图能力,激发学习兴趣,引导学生自觉自主参与课堂教学活动。3.通过对所给问题(例题1、2)的自主探究和合作交流,使学生理解动与静,整体与局部的辨证统一关系,发展学生对变量数学的认识,体会函数知识的核心作用。4.结合具体的问题,并从特殊推广到一般,使学生领会函数与方程之间的内在联系,体验函数与方程思想、数形结合思想及等价转化思想的意义和价值。五、重难点分析教学重点:常见函数模型的图像特征和实际应用。通过课堂师生互动交流,共同完成对相关知识的系统归纳,借助多媒体课件演示,增加学生的直观体验
8、,深化认识,突破重点。教学难点:利用函数图像研究方程问题的思想和方法。在教学过程中,通过学生自主探究学习,在实际问题的解决中学习将抽象的数学语言与直观的图像结合起来,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,实现难点突破。六.教学过程设计:(一)目标设疑,学生解疑,温故知新(约8分钟)提出问题:提问1:我们学过哪些基本初等函数?对它们的大致图像还有印象吗?试回忆所学并完
此文档下载收益归作者所有