欢迎来到天天文库
浏览记录
ID:41031375
大小:383.00 KB
页数:12页
时间:2019-08-14
《讲义~4-4极坐标及参数方程知识点及高考题汇编》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、极坐标及参数方程知识点及例题一、极坐标知识点1.伸缩变换:设点是平面直角坐标系中的任意一点,在变换的作用下,点对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。2.极坐标系的概念:在平面内取一个定点O,从O引一条射线Ox,选定一个单位长度以及计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O点叫做极点,射线Ox叫做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.3.点的极坐标:设是平面内一点,极点与点的距离叫做点的极径,记为;以极轴为始边,射线为
2、终边的叫做点的极角,记为。有序数对叫做点的极坐标,记为.极坐标与表示同一个点。极点的坐标为.4.若,则,规定点与点关于极点对称,即与表示同一点。如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的。5.极坐标与直角坐标的互化:(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式6.曲线的极坐标方程:1.直线的极坐标方程:若直线过点,且极轴到此直线的角为,则它的方程为:几个特殊位置的直线的极坐标方程(1)直线
3、过极点(2)直线过点且垂直于极轴(3)直线过且平行于极轴方程:(1)或写成及(2)(3)ρsinθ=b2.圆的极坐标方程:若圆心为,半径为r的圆方程为:几个特殊位置的圆的极坐标方程(1)当圆心位于极点,r为半径(2)当圆心位于(a>0),a为半径(3)当圆心位于,a为半径方程:(1)(2)(3)7.在极坐标系中,表示以极点为起点的一条射线;表示过极点的一条直线.二、参数方程知识点1.参数方程的概念:在平面直角坐标系中,若曲线C上的点满足,该方程叫曲线C的参数方程,变量t是参变数,简称参数。(在平面直角坐标系中,如果曲线上任意
4、一点的坐标都是某个变数的函数并且对于的每一个允许值,由这个方程所确定的点都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数。)相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。2.曲线的参数方程(1)圆的参数方程可表示为.(2)椭圆的参数方程可表示为.(3)抛物线的参数方程可表示为.(4)经过点,倾斜角为的直线的参数方程可表示为(为参数).3.在建立曲线的参数方程时,要注明参数及参数的取值范围。在参数方程与普通方程的互化中,必须使的取值范围保持一致.规律方法指导: 1、把参
5、数方程化为普通方程,需要根据其结构特征,选取适当的消参方法.常见的消参方法有:代入消法;加减消参;平方和(差)消参法;乘法消参法;比值消参法;利用恒等式消参法;混合消参法等.2、把曲线的普通方程化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性,注意方程中的参数的变化范围。极坐标方程典型例题1.点P的直角坐标为(-,),那么它的极坐标可表示为________.解析 直接利用极坐标与直角坐标的互化公式.答案 2.若曲线的极坐标方程为ρ=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲
6、线的直角坐标方程为________.解析 ∵ρ=2sinθ+4cosθ,∴ρ2=2ρsinθ+4ρcosθ.∴x2+y2=2y+4x,即x2+y2-2y-4x=0.3.(2011·西安五校一模)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为________.解析 ρ=2sinθ的直角坐标方程为x2+y2-2y=0,ρcosθ=-1的直角坐标方程为x=-1,联立方程,得解得即两曲线的交点为(-1,1),又0≤θ<2π,因此这两条曲线的交点的极坐标为.4.在极坐标系中,直线l的方程为
7、ρsinθ=3,则点到直线l的距离为________.解析 ∵直线l的极坐标方程可化为y=3,点化为直角坐标为(,1),∴点到直线l的距离为2.5.(2011·广州调研)在极坐标系中,直线ρsin=2被圆ρ=4截得的弦长为________.解析 由ρsin=2,得(ρsinθ+ρcosθ)=2可化为x+y-2=0.圆ρ=4可化为x2+y2=16,由圆中的弦长公式得:2=2=4.考点一极坐标与直角坐标的互化【例1】►(2011·广州测试(二))设点A的极坐标为,直线l过点A且与极轴所成的角为,则直线l的极坐标方程为______
8、__________.[审题视点]先求直角坐标系下的直线方程再转化极坐标方程.【解析】∵点A的极坐标为,∴点A的平面直角坐标为(,1),又∵直线l过点A且与极轴所成的角为,∴直线l的方程为y-1=(x-)tan,即x-y-2=0,∴直线l的极坐标方程为ρcosθ-ρsinθ-2=0,可整理
此文档下载收益归作者所有