欢迎来到天天文库
浏览记录
ID:40997174
大小:263.07 KB
页数:17页
时间:2019-08-13
《ZEROTH POISSON HOMOLOGY OF SYMMETRIC POWERS OF》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ZEROTHPOISSONHOMOLOGYOFSYMMETRICPOWERSOFISOLATEDQUASIHOMOGENEOUSSURFACESINGULARITIESPAVELETINGOFANDTRAVISSCHEDLERAbstract.LetX⊂C3beasurfacewithanisolatedsingularityattheorigin,givenbytheequationQ(x,y,z)=0,whereQisaweighted-homogeneouspolynomial.Inparticula
2、r,thisincludestheKleiniansurfacesX=C2/GforG3、lG⋊Sn),whereWeylisthe0n02n2nWeylalgebraon2ngenerators.Thatis,theBrylinskispectralsequencedegeneratesinthiscase.Intheellipticcase,thisyieldsthezerothHochschildhomologyofsymmetricpowersoftheellipticalgebraswiththreegeneratorsmodulotheircenter,Aγ,forallbutcou4、ntablymanyparametersγintheellipticcurve.Contents1.Introduction11.1.Mainresult11.2.HochschildhomologyofdeformationsandAlev’sconjecture31.3.GeneralsymmetricproductsandPoisson-invariantfunctionals51.4.AC∗-equivariantvectorbundleonP152.ProofofTheorem1.4.1783.P5、roofofTheorem1.1.13whenXisnotoftypeAm−1114.ProofofTheorem1.1.13intheAm−1case135.ProofofTheorems1.2.1and1.2.2andCorollary1.2.3156.Acknowledgements16References16arXiv:0907.1715v1[math.SG]10Jul20091.Introduction1.1.Mainresult.Leta,b,cbepositiveintegers,andequ6、ipC[x,y,z]withaweightgradinginwhich7、x8、=a,9、y10、=b,and11、z12、=c.Inthispaper,weareinterestedinsurfacesX⊂C3withanisolatedsingularityattheorigin,cutoutbyapolynomialQ(x,y,z)=0,whichisweighted-homogeneousofdegreed.SuchsurfaceswerefirststudiedsystematicallybySaito[Sai87]13、.Forconvenience,wealsoassumethata≤b≤c.ThesurfaceXisequippedwithastandardPoissonbracket,givenbythebivector∂∂∂(1.1.1)π:=(∧∧)y(dQ),∂x∂y∂zDate:July9,2009.1whereyisthenaturalcontractionoperation,whichinthiscaseproducesabivectorfromatrivectorandaone-form.Theabov14、ebivectoris,moreover,weight-homogeneousofdegreeκ:=d−(a+b+c),andisaPoissonbivector(i.e.,{π,π}=0,where{,}istheSchouten-Nijenhuisbracket).HenceitproducesaPoissonbracketofdegreeκ.Inparticular,whenκ<0,XhasaKleinia
3、lG⋊Sn),whereWeylisthe0n02n2nWeylalgebraon2ngenerators.Thatis,theBrylinskispectralsequencedegeneratesinthiscase.Intheellipticcase,thisyieldsthezerothHochschildhomologyofsymmetricpowersoftheellipticalgebraswiththreegeneratorsmodulotheircenter,Aγ,forallbutcou
4、ntablymanyparametersγintheellipticcurve.Contents1.Introduction11.1.Mainresult11.2.HochschildhomologyofdeformationsandAlev’sconjecture31.3.GeneralsymmetricproductsandPoisson-invariantfunctionals51.4.AC∗-equivariantvectorbundleonP152.ProofofTheorem1.4.1783.P
5、roofofTheorem1.1.13whenXisnotoftypeAm−1114.ProofofTheorem1.1.13intheAm−1case135.ProofofTheorems1.2.1and1.2.2andCorollary1.2.3156.Acknowledgements16References16arXiv:0907.1715v1[math.SG]10Jul20091.Introduction1.1.Mainresult.Leta,b,cbepositiveintegers,andequ
6、ipC[x,y,z]withaweightgradinginwhich
7、x
8、=a,
9、y
10、=b,and
11、z
12、=c.Inthispaper,weareinterestedinsurfacesX⊂C3withanisolatedsingularityattheorigin,cutoutbyapolynomialQ(x,y,z)=0,whichisweighted-homogeneousofdegreed.SuchsurfaceswerefirststudiedsystematicallybySaito[Sai87]
13、.Forconvenience,wealsoassumethata≤b≤c.ThesurfaceXisequippedwithastandardPoissonbracket,givenbythebivector∂∂∂(1.1.1)π:=(∧∧)y(dQ),∂x∂y∂zDate:July9,2009.1whereyisthenaturalcontractionoperation,whichinthiscaseproducesabivectorfromatrivectorandaone-form.Theabov
14、ebivectoris,moreover,weight-homogeneousofdegreeκ:=d−(a+b+c),andisaPoissonbivector(i.e.,{π,π}=0,where{,}istheSchouten-Nijenhuisbracket).HenceitproducesaPoissonbracketofdegreeκ.Inparticular,whenκ<0,XhasaKleinia
此文档下载收益归作者所有