欢迎来到天天文库
浏览记录
ID:40945423
大小:267.43 KB
页数:24页
时间:2019-08-11
《Lecture Notes on Symmetric Spaces》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、LectureNotesonSymmetricSpacesJ.-H.EschenburgToRenato.Contents1.DefinitionandExamples(p.2)2.TransvectionsandHolonomy(p.7)3.KillingFields(p.9)4.CartanInvolutionandCartanDecomposition(p.11)5.LocallySymmetricSpaces(p.15)6.Compact,NoncompactandEuclideanType;Duality(p.16)7.TheIsomet
2、ryGroup(p.17)8.LieSubtriplesandTotallyGeodesicSubspaces(p.19)9.IsotropyRepresentationandRank(p.19)10.TheWeylGroup(p.22)References(p.24)0.IntroductionRiemanniansymmetricspacesarethemostbeautifulandmostimportantRie-mannianmanifolds.Ontheonehand,thisclassofspacescontainsmanyprom
3、inentexampleswhichareofgreatimportanceforvariousbranchesofmathematics,likecom-pactLiegroups,Grassmanniansandboundedsymmetricdomains.Anysymmetricspacehasitsownspecialgeometry;euclidean,ellipticandhyperbolicgeometryareonlytheveryfirstexamples.Ontheotherhand,thesespaceshavemuchin
4、common,andthereexistsarichtheory.Thepurposeofthesenotesistogiveabriefintroductiontothetheoryandtosomeoftheexamples.Symmetricspacescanbeconsideredfrommanydifferentpointsofview.TheycanbeviewedasRiemannianmanifoldswithpointreflectionsorwithparallelcurvaturetensororwithspecialholon
5、omyorasahomogeneousspacewithaspecialisotropyorspecialKillingvectorfields,orasLietriplesystems,orasaLiegroupwithacertaininvolution.Wearetryingtodiscussalltheseaspects.Therefore,thechaptersareonlylooselyconnectedandcanbereadalmostseparately.Prerequisitesarethefundamentalconcepts
6、ofRiemanniangeometryandsomebasicknowledgeofLiegroupswhichcanbefounde.g.inChapter4ofCheeger-Ebin[CE].ThemainreferenceisHelgason[H],butalsoLoos[L]andBesse[B].Recently,P.Eberlein[E]gaveabeautifulapproachtosymmetricspacesofnoncompacttype.WeowethanksalsotoHermannKarcherforhislectu
7、resonsymmetricspaces.11.DefinitionandExamplesA(Riemannian)symmetricspaceisaRiemannianmanifoldSwiththepropertythatthegeodesicreflectionatanypointisanisometryofS.Inotherwords,foranyx∈Sthereissomesx∈G=I(S)(theisometrygroupofS)withthepropertiessx(x)=x,(dsx)x=−I.(∗)Thisisometrysxisc
8、alledsymmetryatx.Asafirstconsequenceofthisdefinition,Sisgeodesicallyco
此文档下载收益归作者所有