LECTURE_NOTES_ON_SOBOLEV_SPACES_FOR_CCA

LECTURE_NOTES_ON_SOBOLEV_SPACES_FOR_CCA

ID:40636625

大小:562.12 KB

页数:23页

时间:2019-08-05

LECTURE_NOTES_ON_SOBOLEV_SPACES_FOR_CCA_第1页
LECTURE_NOTES_ON_SOBOLEV_SPACES_FOR_CCA_第2页
LECTURE_NOTES_ON_SOBOLEV_SPACES_FOR_CCA_第3页
LECTURE_NOTES_ON_SOBOLEV_SPACES_FOR_CCA_第4页
LECTURE_NOTES_ON_SOBOLEV_SPACES_FOR_CCA_第5页
资源描述:

《LECTURE_NOTES_ON_SOBOLEV_SPACES_FOR_CCA》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LECTURENOTESONSOBOLEVSPACESFORCCAWILLIEWAI-YEUNGWONG0.1.References.Beforewestart,somereferences:•D.GilbargandN.S.Trudinger,Ellipticpartialdifferentialequationsofsecondorder,Springer.Ch.7.•L.Evans,Partialdifferentialequations,AmericanMath.Soc.Ch.5.•M.E.Taylor,Partialdifferentiale

2、quationsI,Springer.Ch.4.(Note:thispresentationisbasedonheavydosesofFourieranalysisandfunctionalanalysis.)•H.Triebel,Theoryoffunctionspaces,Birkhauser.Ch.2.•R.Adams,SobolevSpaces,AcademicPress.0.2.Notations.WewillworkinRd.p0:givenp≥1arealnumber,wedefinep0tobethepositiverealnumb

3、ersatisfyingp−1+(p0)−1=1;p0iscalledtheHölderconjugateofpΩ:opensetinRd∂Ω:theboundaryofΩ,Ω¯Ω∂α:partialderivativeofmulti-indexα.α=(α1,...,αd)∈(N0)d,withnormPαα1αd

4、α

5、=αi.∂=∂1·∂dΩ1bΩ2:thereexistsacompactsetKsuchthatΩ1⊂K⊂Ω2Dα:weakderivative(see§1.3)ofmulti-indexαsuppf:forafunction

6、f,thisdenotesthesupportset,i.e.thesetonwhichf,0C(Ω):continuousfunctionstakingvalueintherealsdefinedonΩ(thoughmostofwhatwesaywillbevalidforfunctionstakingvalueinaHilbertspace)C(Ω¯):thesubsetofC(Ω)consistingoffunctionsthatextendcontinuouslyto∂ΩC0(Ω):thesubsetofC(Ω¯)consistingoff

7、unctionswhichvanishon∂ΩCk(Ω):functionsfsuchthat∂αf∈C(Ω)forevery

8、α

9、≤k.kisallowedtobe∞(inwhichcasefissmooth)orω(inwhichcasefisanalytic).AnalogouslywedefineCk(Ω¯)andCk(Ω)(notethatthesetCω(Ω)containsonlythezero00functions)Cck(Ω):subsetofCk(Ω)suchthatsuppfbΩppL(Ω),L(Ω):Lebesguespac

10、es(see§1.1)lock,pk,ps,pW(Ω),W(Ω),W(Ω):Sobolevspaces(see§1.4)loc0k·kp:Lpnorm(see§1.1)k·kp,k:Wk,pnorm(see§1.4)VersionasofOctober27,2010.12W.W.WONG1.BasicDefinitionsInthisfirstpartΩcanbetakentobeanyopensubsetofRd.ThroughoutdxwillbethestandardLebesguemeasure.Byameasurablefunctionw

11、e’llmeanarepresentativeofanequivalenceclassofmeasurablefunctionswhichdifferonΩinasetofmeasure0.Thussupandinfshouldbementallyreplacedbyesssupandessinfwhenappropriate.1.1.Lebesguespaces.For∞>p≥1,Lp(Ω)denotesthesetofp-integrablemea-surablefunctions,withnorm1/pZp(1)kukp;

12、Ω=

13、u

14、dx.ΩIfutakesvaluesinsomenormedlinearspace,then

15、·

16、willbe

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签