Tuning a Monte Carlo Algorithm on GPUs

Tuning a Monte Carlo Algorithm on GPUs

ID:40850575

大小:169.00 KB

页数:36页

时间:2019-08-08

Tuning a Monte Carlo Algorithm on GPUs_第1页
Tuning a Monte Carlo Algorithm on GPUs_第2页
Tuning a Monte Carlo Algorithm on GPUs_第3页
Tuning a Monte Carlo Algorithm on GPUs_第4页
Tuning a Monte Carlo Algorithm on GPUs_第5页
资源描述:

《Tuning a Monte Carlo Algorithm on GPUs》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TechnicalNewsfromThePortlandGroupPGIHomePageFebruary2010TuningaMonteCarloAlgorithmonGPUsbyMathewColgrove,PGICustomerSupportEngineeringSincetheintroductionofPGICUDAFortranlatelastyear,we'veseenadramaticriseinthenumberofcustomersusingthisnewextensiontotheFortranlanguage.Asthemoderatorofthe

2、PGIUserForum,Ihavebeenverybusyansweringquestionsaboutthelanguage,andnotingthosequestionsthatseemtobeaskedoftenormaybeofinteresttothewidercommunity.ForthisinstallmentofthePGInsider,IhaveimplementedtheMonteCarloIntegrationalgorithmtohighlightsomeofthetips,tricks,andtrapsofprogrammingforthe

3、GPU.MonteCarloIntegrationFormysamplecodeIchoseasimpleMonteCarloIntegrationalgorithmtocomputetheapproximatevalueofpi.Thecodefirstcreatesalistofrandompointswithinasquare.Eachpointisevaluatedusingthefunction:f(x,y)=(x^2+y^2<1)?1:0Thepointsarethensummed.Theapproximatevalueofpicanthenbecalcul

4、atedbymultiplyingfourtimesthevolumeofthesquarewiththemeanvalueforf(x,y).Thecodeitselfisverysimpletounderstandandthealgorithmishighlyparallelbecauseeachf(x,y)calculationcanbeperformedindependently.Besidesthis,thealgorithmusesasumreductionandrequiresarandomnumbergenerator(RNG).Bothofwhichp

5、resentinterestingproblems.ForthefollowingexamplessourcecodeisavailablefordownloadfromthePGIwebsite.HereisabasicFortranimplementationofaMonteCarloIntegrationalgorithm.!Performthefunctionf(x,y)=(x^2+y^2<1)?1:0doi=1,NtempVal=X(i)*X(i)+Y(i)*Y(i)if(tempVal<1)thentemp(i)=1elsetemp(i)=0endifend

6、do!SumtheresultssumA=0sumSq=0doi=1,NsumA=sumA+temp(i)sumSq=sumSq+(temp(i)*temp(i))enddo!calulatethemeanmeanA=sumA/real(N);meanSq=sumSq/real(N);!approximatepiresults%estimate=meanA*volume*4results%variance=(meanSq-meanA*meanA)/(N-1)BaselinePerformanceFirst,let'sstartwiththehostversionofth

7、ecodetogetourbaselineperformance.Wecompiledthecodewithauto-parallelizationenabledandranwithfourthreads.Thesystemwe'reusingisanIntelCorei7(singlesocketfourcoreNehalem)withanattachedNVIDIAS1070(fourTeslaC1060cards).ThecompilerversionusedisPGI10.2.(Foralistingoftheflagsusedi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。