monte carlo and quasi monte carlo methods

monte carlo and quasi monte carlo methods

ID:7290925

大小:442.25 KB

页数:24页

时间:2018-02-10

monte carlo and quasi monte carlo methods_第1页
monte carlo and quasi monte carlo methods_第2页
monte carlo and quasi monte carlo methods_第3页
monte carlo and quasi monte carlo methods_第4页
monte carlo and quasi monte carlo methods_第5页
资源描述:

《monte carlo and quasi monte carlo methods》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、Chapter12MonteCarloandQuasi-MonteCarloMethodsInthischapter,wediscussMonteCarloandQuasi-MonteCarlomethodsandshowhowtheycanbeusedtocomputefunctionalsofmultidimensionaldiffusions.12.1MonteCarloMethodsMonteCarlo(MC)methodscanbeemployedtocomputefunctionalsofmultidime

2、n-sionaldiffusions,e.g.byusingtheinversetransformmethod,seee.g.Sect.6.1andPlatenandBruti-Liberati(2010),ifthetransitiondensityisknownexplicitly.How-ever,whenthetransitiondensityisnotknownexplicitly,onecanemploydiscretiza-tionschemes,suchastheEulerScheme,seeKloed

3、enandPlaten(1999),toapprox-imatelysamplefromthetransitiondensity.Thediscretizationschemeintroducesanerror,whichcanbestudiedusingthetechniquesinKloedenandPlaten(1999).Theaimofthissectionistointroducetwoalternativestodiscretizationschemes,whichallowustoeliminateth

4、ediscretizationerrorintroducedbydiscretizationschemesandtorecovertheMonteCarloconvergencerate.Thesealternativesaretheexactsimulationmethods,duetoRobertsandcollaborators,seeBeskosetal.(2006,2008,2009),BeskosandRoberts(2005),andalsoChenandHuang(2012b),andmulti-lev

5、elmethodsduetoGilesandcoauthors,seeGiles(2008a,2008b).WeÞrstlyprovideaverybriefintroductiontoMonteCarlomethodsandthenbrießyillustratetheEulerdiscretizationscheme,whichmotivatestheexactsim-ulationandmultilevelmethods.FordetailedreferencesonMonteCarlomethodsapplie

6、dtoÞnance,wereferthereadertoKloedenandPlaten(1999),Glasser-man(2004),Jckel(2002),PlatenandBruti-Liberati(2010),andKornetal.(2010).J.Baldeaux,E.Platen,FunctionalsofMultidimensionalDiffusionswithApplications299toFinance,Bocconi&SpringerSeries5,DOI10.1007/978-3-319

7、-00747-2_12,©SpringerInternationalPublishingSwitzerland201330012MonteCarloandQuasi-MonteCarloMethods12.1.1MonteCarloMethodsMonteCarlomethodsareeasilyillustratedbyconsideringtheproblemofestimatingtheintegral1a=f(x)dx.0Thisintegralcanbeinterpretedastheexpectedval

8、ueEf(U),whereUisuniformlydistributedovertheinterval[0,1],assumingthatfisinte-grable.Nowconsiderthei.i.d.randomvariablesU1,U2,...,UN,uniformlydis-tributedover[0,1],t

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。