A novel local manifold-ranking based K-NN for modeling the regression一种新的基于局部流形排序的K-NN回归模型 生物活性与分子描述符之间的关系

A novel local manifold-ranking based K-NN for modeling the regression一种新的基于局部流形排序的K-NN回归模型 生物活性与分子描述符之间的关系

ID:40847433

大小:754.49 KB

页数:7页

时间:2019-08-08

A novel local manifold-ranking based K-NN for modeling the regression一种新的基于局部流形排序的K-NN回归模型 生物活性与分子描述符之间的关系_第1页
A novel local manifold-ranking based K-NN for modeling the regression一种新的基于局部流形排序的K-NN回归模型 生物活性与分子描述符之间的关系_第2页
A novel local manifold-ranking based K-NN for modeling the regression一种新的基于局部流形排序的K-NN回归模型 生物活性与分子描述符之间的关系_第3页
A novel local manifold-ranking based K-NN for modeling the regression一种新的基于局部流形排序的K-NN回归模型 生物活性与分子描述符之间的关系_第4页
A novel local manifold-ranking based K-NN for modeling the regression一种新的基于局部流形排序的K-NN回归模型 生物活性与分子描述符之间的关系_第5页
资源描述:

《A novel local manifold-ranking based K-NN for modeling the regression一种新的基于局部流形排序的K-NN回归模型 生物活性与分子描述符之间的关系》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ChemometricsandIntelligentLaboratorySystems151(2016)71–77ContentslistsavailableatScienceDirectChemometricsandIntelligentLaboratorySystemsjournalhomepage:www.elsevier.com/locate/chemolabAnovellocalmanifold-rankingbasedK-NNformodelingtheregressionbetweenbioactivityandmolec

2、ulardescriptorsa,1b,1c,⁎,XinHuangdcdLiangShen,DongshengCao,QingsongXu,NanXiao,YizengLiangaSchoolofScience,QingdaoUniversityofTechnology,Qingdao266520,PRChinabSchoolofMedicine,CentralSouthUniversity,Changsha410083,PRChinacSchoolofMathematicalandStatistics,CentralSouthUniv

3、ersity,Changsha410083,PRChinadResearchCenterofModernizationofTraditionalChineseMedicines,CentralSouthUniversity,Changsha410083,PRChinaarticleinfoabstractArticlehistory:Inthepresentstudy,weproposeanovellocalregressionalgorithmbasedonmanifold-rankingandk-nearestReceived10F

4、ebruary2015neighbors(MRKNNforshort).Undertheframeworkofkernelmethods,thegrouprelationshipsharedamongReceivedinrevisedform9December2015multiplemoleculesisfirstlycapturedbythegraphwherenodesrepresentmoleculesandedgesrepresentAccepted10December2015pairwiserelations.Then,mani

5、foldrankingalgorithmisdevelopedforquery-orientedextractivesummarization,Availableonline21December2015wheretheinfluenceofqueryispropagatedtoothermoleculesthroughthestructureoftheconstructedgraph.WhenevaluatedonfourSARdatasets,MRKNNalgorithmcanprovideafeasiblewaytoexploitth

6、eintrinsicstruc-Keywords:Chemicalsimilaritytureofsimilarityrelationships.Resultshavevalidatedtheefficacyoftheproposedalgorithm.Manifold-ranking©2015ElsevierB.V.Allrightsreserved.k-nearestneighbors(K-NN)Quantitativestructure–activityrelationship(QSAR)1.Introductionsubsets.

7、Actually,oneofthemostcommonlyusedlocalmethodsinQSARstudyingisk-nearestneighbors(K-NN)[18].ItisoneoftheQuantitativestructure–activityrelationship(QSAR)technologymostfundamentalandsimpleclassificationorregressionmethodsforiscapableofmodelingandpredictionoftherelationshipbet

8、weenaQSARstudywhenthereislittleornopriorknowledgeaboutthedistri-response-variableandmolecularpredictors

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。