小学数学一题多解的探究资料

小学数学一题多解的探究资料

ID:40739982

大小:21.50 KB

页数:3页

时间:2019-08-07

小学数学一题多解的探究资料_第1页
小学数学一题多解的探究资料_第2页
小学数学一题多解的探究资料_第3页
资源描述:

《小学数学一题多解的探究资料》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、小学数学“一题多解”的探究数学是一种应用非常广泛的学科,它将数与量、结构和空间关系在生活中具体应用和体现。“一花独放不是春,百花齐放春满园”。数学自身同样存在“百花齐放”的状态。数学中存在的“百花齐放”,指的是数学的多种表现形式,数学题中的一题多解便是其中之一。一题多解表现了思维的灵活性和广阔性,对沟通知识引起多路思维大有益处,它是激发学生学习兴趣,调动学生学习积极性的有效方法,与此同时,它也是数学教学的一种重要方法,是在不改变条件和问题的情况下,让学生多角度、多侧面地进行分析和思考,探求不同的解题思路。在探求的过程中,由于学生思维发散点不同,因而能找出多种解题途径,收到培养求异思维的效果。

2、六至十二岁的小学生新鲜感强,目的性不够明确,爱动、好问,注意力不够稳定,很难长时间把注意力集中到同一学习活动上;教师教给学生的是现成的结论、现成的论证、现成的说明,一切都是现成的,无需学生动手实践就可以将知识快速地储存于自己的大脑。因此,教师付出再多辛苦劳动的结果却是学生学习完许多知识便忘。此时巧妙地引入一题多解,更好地好地体现了以学生为本的主导思想,同时又减轻教师教学负担,转变教师教学模式。例如,有这样一题“两辆汽车同时从甲、乙两地相对开出,5小时后相遇。一辆汽车的速度是每小时55千米,另一辆汽车的速度是每小时45千米,甲、乙两地相距多少千米?”它的解法就有多种。【分析1】先求两辆汽车各行

3、了多少千米,再求两辆汽车行驶路程的和,即得甲、乙两地相距多少千米。【解法1】一辆汽车行驶了多少千米?55×5=275(千米)另一辆汽车行驶了多少千米?45×5=225(千米)甲、乙两地相距多少千米?275+225=500(千米)综合算式:55×5+45×5=275+225=500(千米)【分析2】先求出两辆汽车每小时共行驶多少千米,再乘以相遇时间,即得甲、乙两地相距多少千米。【解法2】两车每小时共行驶多少千米?55+45=100(千米)甲、乙两地相距多少千米?100×5=500(千米)综合算式:(55+45)×5=100×5=500(千米)【分析3】甲、乙两地的距离除以相遇时间,就等于两辆汽

4、车的速度和。由此可列出方程,求甲、乙两地相距多少千米。【解法3】设甲乙两地相距x千米。x÷5=55+45x=100×5x=500【分析4】甲乙两地距离减去一辆汽车行驶的路程,就等于另一辆汽车行驶的路程,由此列方程解答。【解法4】设甲乙两地相距x千米。x-55×5=45×5x-275=225x=275+225x=500答:甲、乙两地相距500千米。再如:“有两个完全相同的长方体恰好拼成了一个正方体,正方体的表面积是30平方厘米.如果把这两个长方体改拼成一个大长方体,那么大长方体的表面积是多少?”【分析1】因为正方体有6个相等的面,所以每个面的面积是30÷6=5平方厘米.拼成一个大长方体要减少一

5、个面的面积,同时增加两个面的面积.由此可求大长方体的表面积.【解法1】30-30÷6+30÷6×2  =30-5+10=35(平方厘米).  或:30+30÷6×(2-1)  =30+5=35(平方厘米).【分析2】因为拼成大长方体后,表面积先减少一个面的面积,同时又增加两个面的面积,实际上增加了一个面的面积.【解法2】30+30÷6=30+5=35(平方厘米).【分析3】把原来正方体的表面积看作“1”.先求出增加的一个面是原来正方体表面积的几分之几,再运用分数乘法应用题的解法求大长方体的表面积.【分析4】因为原来正方体的表面积是6个小正方形面积的和,拼成大长方体的表面积是7个小正方形面积的

6、和,所以可先求每个小正方形的面积,再求7个小正方形的面积.【解法4】30÷6×(6+1)  =30÷6×7=35(平方厘米).  答:大长方体的表面积是35平方厘米.由此可见,一题多解,从某方面而言,体现了数学思想。我国著名数学教育家姜伯驹院士曾多次强调,应该在教材和教学过程中注入数学思想,发挥数学思想方法的作用,培养应用意识和能力。可见,数学思想和数学方法是数学知识应用的根基和源泉。从案例提供的一题多种解法我们可以得知以下数学思想在小教学中的应用。一、算术解法正是假设思想的体现,假设思想是一种常用的推测性的数学思考方法.它对一些无从下手的题,先对题目中的已知条件或问题作出某种假设,然后按照

7、题中的已知条件进行推算,根据数量出现的矛盾,最后找到正确答案的一种思想方法。比如,按学生现有的知识,解此题较困难,在实际教学中,数学教师就可以引导学生从假设思想开始推断,得出结论。二、代数解法体现了数学思想中的方程思想。笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。方程思想在数学中的应用是十分广泛的。哪里有等式,哪里就有方程;哪里有公式,哪里就有方程。上面的案例就有很好的体现,当然,还有其它的数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。