导数的概念说课稿完成稿资料

导数的概念说课稿完成稿资料

ID:40737320

大小:583.00 KB

页数:7页

时间:2019-08-06

导数的概念说课稿完成稿资料_第1页
导数的概念说课稿完成稿资料_第2页
导数的概念说课稿完成稿资料_第3页
导数的概念说课稿完成稿资料_第4页
导数的概念说课稿完成稿资料_第5页
资源描述:

《导数的概念说课稿完成稿资料》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、实验探究,让数学概念自然生长——《导数的概念》说课江苏省常州市第五中学张志勇一.教学内容与内容解析1、教学内容:本节课的教学内容选自苏教版普通高中课程标准实验教科书数学选修2-2第一章第一节的《导数的概念》第2课时“瞬时变化率——导数”,导数的概念包括三部分教学内容,即平均变化率、瞬时变化率、导数,其中瞬时变化率包括曲线上一点处的切线和瞬时速度、瞬时加速度,本节课之前学生已完成平均变化率的学习.2、内容解析:导数是研究现代科学技术必不可少的工具,是进一步学习数学和其他自然科学的基础,在物理学、经济学等领域都有广泛的应用.对于中学阶段而言,导数是研究函数的有力工具

2、,在求函数的单调性、极值、曲线的切线以及一些优化问题时有着广泛的应用,同时对研究几何、不等式起着重要作用.从而导数在函数研究中的应用应是整个章节的重点,但不能仅仅将导数作为一种规则和步骤来学习,导数的概念无疑是教学的起点也是关键,否则学生很难体会导数的思想及其内涵.事实上导数概念的建立基于“无限逼近”的过程,这与初等数学所涉及的思想方法有本质的不同.囿于学生的认知水平和可接受能力,教材中并没有引进极限概念(过多的极限知识可能会冲淡甚至干扰对导数本质的理解),而是从学生的生活经验出发,通过实例引导学生经历由平均变化率到瞬时变化率的过程,直至建立起导数的数学模型.3

3、、教学设想:导数的本质在于从平均变化率到瞬时变化率的“无限逼近”,而无限逼近有三种方式:数值逼近、几何直观感知、解析式抽象;而达成学生极限思想形成之教学目标,需要以问题为背景,关键是设计活动让学生经历从平均变化率到瞬时变化率的过程.因此教学处理时,试图还原知识建构的完整过程,实现导数概念的“再创造”,其中数学探究环节采用数学实验的方式,用数值逼近法感知导数作为逼近值的存在性,用解析式抽象法从数学角度加以确认;模型解释环节则是教材中“曲线上一点处的切线”的流程再造(原来是作为导数知识的引入环节).二.目标设定及目标解析1、知识与技能目标:会从数值逼近、几何直观感知

4、、解析式抽象三个角度认识导数的涵义,应用导数定义求简单函数在在某点处的导数,掌握求导数的基本步骤,初步学会求解简单函数在一点处的切线方程.2、过程与方法目标:经历从平均变化率到瞬时变化率的过程,感知“无限逼近”与“量变到质变”、“近似与精确”的哲学思想,在实验观察、归纳抽象的过程中建构导数概念,在解释应用与拓展的过程中领悟数学发现的完整过程.3、情感、态度、价值观目标:经历数学发现过程、感受数学研究方法,提升数学学习兴趣和信念;应用手持技术进行数学实验中改善数学学习方法,从向书本学习数学转向用技术研究数学.教学重点导数概念的建构及导数的解释应用.教学难点导数的几

5、何解释及切线概念的形成.三.教学问题诊断分析本节课需要用到的知识储备包括平均变化率、直线的斜率、物理中物体运动的瞬时速度、解析几何中的切线等,而所要用到的归纳、概括、类比、抽象思维能力等也已具备,特别地实验班的学生均能熟练操作图形计算器,也多次经历过数学再创造的过程,对“问题情境—建立模型—解释应用与拓展”这样的学习程序并不陌生,这些都是开展本节课学习的基础.可能存在的问题:一是对学生而言,“无限逼近”的思想闻所未闻,需要精心设计活动帮助学生经历从平均变化率到瞬时变化率的过程;二是数值逼近的运算繁琐,不能采取简单告诉的方式而需应用技术来实现计算;三是概念建构很难

6、一蹴而就,需要有丰富的实例作支持,于是在数学探究环节中就需要从数值计算走向解析式抽象,从而实现概念形成的“水到渠成”;四是导数概念的几何解释是从数走向形的基本保证,需要有几何直观作支持,需要创设资源支持“以直代曲”;五是尽管学生的图形计算器操作较熟练,但CAS系统还很陌生,在教学中需要有示范性讲解并提供即时帮助.四.教学支持条件分析导数知识再创造教学设想的达成,离不开教育技术的支持,本教学案例中利用HPPrime的表征优势,为学生提供如下支持平台:一是数值逼近计算平台,在电子表格中设置图2所示的情境,其中,,而则在CAS中设置(如图1);二是几何直观解释平台,在

7、几何学模块中,设置好图4所示的APP,学生在操作时可以改变Q点位置,观察割线斜率的变化,然后再与相应的瞬时变化率作比较;三是导数求值验证平台:如图5,导数运算对学生而言是含有字母的运算,过程中涉及因式分解问题,操作中可以让学生先进行纸笔运算,然后再作计算器验证.教学过程中前两个平台通过Connkit课堂管理系统发送给学生,让他们进行自主操作、探索发现.后面一个平台用于教师演示,必要时还可开发GeoGebra用于几何解释演示.五.教学流程设计1、问题情境问题一、气球膨胀率我们都吹过气球,回忆一下吹气球的过程可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢

8、,能否从数学角度来描述这

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。